107 research outputs found

    The Entomopathogenic Bacterial Endosymbionts Xenorhabdus and Photorhabdus: Convergent Lifestyles from Divergent Genomes

    Get PDF
    Members of the genus Xenorhabdus are entomopathogenic bacteria that associate with nematodes. The nematode-bacteria pair infects and kills insects, with both partners contributing to insect pathogenesis and the bacteria providing nutrition to the nematode from available insect-derived nutrients. The nematode provides the bacteria with protection from predators, access to nutrients, and a mechanism of dispersal. Members of the bacterial genus Photorhabdus also associate with nematodes to kill insects, and both genera of bacteria provide similar services to their different nematode hosts through unique physiological and metabolic mechanisms. We posited that these differences would be reflected in their respective genomes. To test this, we sequenced to completion the genomes of Xenorhabdus nematophila ATCC 19061 and Xenorhabdus bovienii SS-2004. As expected, both Xenorhabdus genomes encode many anti-insecticidal compounds, commensurate with their entomopathogenic lifestyle. Despite the similarities in lifestyle between Xenorhabdus and Photorhabdus bacteria, a comparative analysis of the Xenorhabdus, Photorhabdus luminescens, and P. asymbiotica genomes suggests genomic divergence. These findings indicate that evolutionary changes shaped by symbiotic interactions can follow different routes to achieve similar end points

    stairs and fire

    Get PDF

    Raman spectroscopy for profiling physical and chemical properties of atmospheric aerosol particles: A review

    No full text
    Atmosphere aerosols have significant impact on human health and the environment. Aerosol particles have a number of characteristics that influence their health and environmental effects, including their size, shape, and chemical composition. A great deal of difficulty is associated with quantifying and identifying atmospheric aerosols because these parameters are highly variable on a spatial and temporal scale. An important component of understanding aerosol fate is Raman Spectroscopy (RS), which is capable of resolving chemical compositions of individual particles. This review presented strategic techniques, especially RS methods for characterizing atmospheric aerosols. The nature and properties of atmospheric aerosols and their influence on environment and human health were briefly described. Analytical methodologies that offer insight into the chemistry and multidimensional properties of aerosols were discussed. In addition, perspectives for practical applications of atmospheric aerosols using RS are featured

    MOGAD Involving Cranial Neuropathies: A Case Report and Review of Literature

    No full text
    Myelin-oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD) is an autoimmune-mediated demyelinating disease of the central nervous system (CNS). Patients with MOGAD may develop any combination of optic neuritis (ON), myelitis, brainstem syndrome and encephalitis. Reports of MOGAD with cranial nerve involvement are rare. Herein, we report a MOGAD patient with cranial neuropathies. In addition, we summarized the clinical features of the previously reported six MOG-IgG-positive cases with cranial nerve involvement and discussed the underlying mechanisms of MOGAD involving cranial nerves. Cranial neuropathy is an emerging phenotype in MOGAD, which has characteristics of both central and peripheral nervous system (PNS) involvement, with the trigeminal nerve being the most commonly affected nerve. MOG antibody testing in patients with cranial neuropathies is warranted, and immunotherapy is advocated when the risk of relapse is high. Although higher antibody titers and persistently positive serological test results are predictive of disease recurrence, the long-term outcomes of MOG-IgG-positive patients with cranial neuropathies remain largely unknown

    High-Quality Recrystallization of Amorphous Silicon on Si (100) Induced via Laser Annealing at the Nanoscale

    No full text
    At sub-3 nm nodes, the scaling of lateral devices represented by a fin field-effect transistor (FinFET) and gate-all-around field effect transistors (GAAFET) faces increasing technical challenges. At the same time, the development of vertical devices in the three-dimensional direction has excellent potential for scaling. However, existing vertical devices face two technical challenges: “self-alignment of gate and channel” and “precise gate length control”. A recrystallization-based vertical C-shaped-channel nanosheet field effect transistor (RC-VCNFET) was proposed, and related process modules were developed. The vertical nanosheet with an “exposed top” structure was successfully fabricated. Moreover, through physical characterization methods such as scanning electron microscopy (SEM), atomic force microscopy (AFM), conductive atomic force microscopy (C-AFM) and transmission electron microscopy (TEM), the influencing factors of the crystal structure of the vertical nanosheet were analyzed. This lays the foundation for fabricating high-performance and low-cost RC-VCNFETs devices in the future

    Table_1_Validity of the SARC-F questionnaire in assessing sarcopenia in patients with chronic kidney disease: a cross-sectional study.DOCX

    No full text
    ObjectiveTo examine the validity of the 5-component SARC-F questionnaire for screening sarcopenia among patients with chronic kidney disease (CKD).MethodsEligible participants were enrolled from the Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine from March 2019 to November 2019. Evaluations were performed using the self-administered SARC-F questionnaire. Sarcopenia was diagnosed by grip strength, the chair stand test and appendicular skeletal muscle mass. The severity of sarcopenia was evaluated by gait speed. We calculated the sensitivity and specificity of the SARC-F to evaluate construct validity. Moreover, receiver operating characteristic (ROC) curve analysis was performed to identify the cutoff value for nondialysis-dependent (NDD) CKD patients’ and maintenance hemodialysis (MHD) patients’ scores.ResultsA total of 105 NDD-CKD patients and 125 MHD patients were included, and the prevalence of sarcopenia was 5.7 and 31.2%, respectively. Among them, there were 21 (16.8%) MHD patients with severe sarcopenia but no NDD-CKD patients with severe sarcopenia. The sensitivity and specificity of the SARC-F were 16.7 and 98.0% for NDD-CKD patients, and 48.7 and 89.5% for MHD patients, respectively. For NDD-CKD patients, the area under the receiver operating characteristic curve (AUROC) of the total SARC-F score was 0.978 (95% confidence interval (CI): 0.929–0.997, p ConclusionCKD patients, especially MHD patients, were at high risk of suffering sarcopenia. The SARC-F had low-to-moderate sensitivity but high specificity for screening sarcopenia among patients with CKD. The best cutoff values of the SARC-F score were different for screening sarcopenia among NDD-CKD and MHD patients.</p

    Results of wheat leaves with silenced target genes by VIGS and the leaves of wheat infested by stripe rust after gene silencing.

    No full text
    <p>A. Mild chlorotic mosaic symptoms were observed on the leaves inoculated with BSMV: γ、BSMV: <i>TaLHY</i>、and BSMV: GFP at 10 dpi. Mock: Chuannong19 leaves treated with buffer. Photobleaching was evident on leaves infected with BSMV: PDS at 15 dpi but not on mock-inoculated leaves. B. Stripe rust infection types of Chuannong19 at 15 dpi with CYR32. Mianyang 11: comparison of disease infection. Typical leaves were photographed at 15 dpi.</p
    • 

    corecore