108 research outputs found

    The Role of Ghrelin in Reward-Based Eating

    Get PDF
    The peptide hormone ghrelin acts in the central nervous system as a potent orexigenic signal. Not only is ghrelin recognized as playing an important role in feeding circuits traditionally thought of as affecting body weight homeostasis, but also an accumulating number of scientific studies have identified ghrelin as being a key regulator of reward-based, hedonic eating behaviors. In the current article, we review ghrelin's orexigenic actions, the evidence linking ghrelin to food reward behavior, potential mechanisms by which ghrelin mediates reward-based eating behavior, and those studies suggesting an obligatory role for ghrelin in the changed eating behaviors induced by stress.Instituto Multidisciplinario de Biología Celula

    The Role of Ghrelin in Reward-Based Eating

    Get PDF
    The peptide hormone ghrelin acts in the central nervous system as a potent orexigenic signal. Not only is ghrelin recognized as playing an important role in feeding circuits traditionally thought of as affecting body weight homeostasis, but also an accumulating number of scientific studies have identified ghrelin as being a key regulator of reward-based, hedonic eating behaviors. In the current article, we review ghrelin's orexigenic actions, the evidence linking ghrelin to food reward behavior, potential mechanisms by which ghrelin mediates reward-based eating behavior, and those studies suggesting an obligatory role for ghrelin in the changed eating behaviors induced by stress.Instituto Multidisciplinario de Biología Celula

    Ghrelin's Roles in Stress, Mood, and Anxiety Regulation

    Get PDF
    Several studies suggest that the peptide hormone ghrelin mediates some of the usual behavioral responses to acute and chronic stress. Circulating ghrelin levels have been found to rise following stress. It has been proposed that this elevated ghrelin helps animals cope with stress by generating antidepressant-like behavioral adaptations, although another study suggests that decreasing CNS ghrelin expression has antidepressant-like effects. Ghrelin also seems to have effects on anxiety, although these have been shown to be alternatively anxiogenic or anxiolytic. The current review discusses our current understanding of ghrelin's roles in stress, mood, and anxiety

    Toward a consensus nomenclature for ghrelin, its non-acylated form, liver expressed antimicrobial peptide 2 and growth hormone secretagogue receptor

    Get PDF
    The stomach-derived octanoylated peptide ghrelin was discovered in 1999 and recognized as an endogenous agonist of the growth hormone secretagogue receptor (GHSR). Subsequently, ghrelin has been shown to play key roles in controlling not only growth hormone secretion, but also a variety of other physiological functions including, but not limited to, food intake, reward-related behaviors, glucose homeostasis and gastrointestinal tract motility. Importantly, a non-acylated form of ghrelin, desacyl-ghrelin, can also be detected in biological samples. Desacyl-ghrelin, however, does not bind to GHSR at physiological levels, and its physiological role has remained less well-characterized than that of ghrelin. Ghrelin and desacyl-ghrelin are currently referred to in the literature using many different terms, highlighting the need for a consistent nomenclature. The variability of terms used to designate ghrelin can lead not only to confusion, but also to miscommunication, especially for those who are less familiar with the ghrelin literature. Thus, we conducted a survey among experts who have contributed to the ghrelin literature aiming to identify whether a consensus may be reached. Based on the results of this consensus, we propose using the terms “ghrelin” and “desacyl-ghrelin” to refer to the hormone itself and its non-acylated form, respectively. Based on the results of this consensus, we further propose using the terms “GHSR” for the receptor, and “LEAP2” for liver-expressed antimicrobial peptide 2, a recently recognized endogenous GHSR antagonist/inverse agonist.Fil: Perello, Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Multidisciplinario de Biología Celular. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Multidisciplinario de Biología Celular. Universidad Nacional de La Plata. Instituto Multidisciplinario de Biología Celular; ArgentinaFil: Dickson, Suzanne L.. The Sahlgrenska Academy at the University of Gothenburg; SueciaFil: Zigman, Jeffrey M.. UT Southwestern Medical Center; Estados UnidosFil: Leggio, Lorenzo. National Institutes of Health; Estados Unido

    Ghrelin does not impact the blunted counterregulatory response to recurrent hypoglycemia in mice

    Get PDF
    IntroductionRecurrent episodes of insulin-induced hypoglycemia in patients with diabetes mellitus can result in hypoglycemia-associated autonomic failure (HAAF), which is characterized by a compromised response to hypoglycemia by counterregulatory hormones (counterregulatory response; CRR) and hypoglycemia unawareness. HAAF is a leading cause of morbidity in diabetes and often hinders optimal regulation of blood glucose levels. Yet, the molecular pathways underlying HAAF remain incompletely described. We previously reported that in mice, ghrelin is permissive for the usual CRR to insulin-induced hypoglycemia. Here, we tested the hypothesis that attenuated release of ghrelin both results from HAAF and contributes to HAAF.MethodsC57BL/6N mice, ghrelin-knockout (KO) + control mice, and GhIRKO (ghrelin cell-selective insulin receptor knockout) + control mice were randomized to one of three treatment groups: a “Euglycemia” group was injected with saline and remained euglycemic; a 1X hypoglycemia (“1X Hypo”) group underwent a single episode of insulin-induced hypoglycemia; a recurrent hypoglycemia (“Recurrent Hypo”) group underwent repeated episodes of insulin-induced hypoglycemia over five successive days.ResultsRecurrent hypoglycemia exaggerated the reduction in blood glucose (by ~30%) and attenuated the elevations in plasma levels of the CRR hormones glucagon (by 64.5%) and epinephrine (by 52.9%) in C57BL/6N mice compared to a single hypoglycemic episode. Yet, plasma ghrelin was equivalently reduced in “1X Hypo” and “Recurrent Hypo” C57BL/6N mice. Ghrelin-KO mice exhibited neither exaggerated hypoglycemia in response to recurrent hypoglycemia, nor any additional attenuation in CRR hormone levels compared to wild-type littermates. Also, in response to recurrent hypoglycemia, GhIRKO mice exhibited nearly identical blood glucose and plasma CRR hormone levels as littermates with intact insulin receptor expression (floxed-IR mice), despite higher plasma ghrelin in GhIRKO mice.ConclusionsThese data suggest that the usual reduction of plasma ghrelin due to insulin-induced hypoglycemia is unaltered by recurrent hypoglycemia and that ghrelin does not impact blood glucose or the blunted CRR hormone responses during recurrent hypoglycemia

    Liver-expressed antimicrobial peptide 2 elevation contributes to age-associated cognitive decline

    Get PDF
    Elderly individuals frequently report cognitive decline, while various studies indicate hippocampal functional declines with advancing age. Hippocampal function is influenced by ghrelin through hippocampus-expressed growth hormone secretagogue receptor (GHSR). Liver-expressed antimicrobial peptide 2 (LEAP2) is an endogenous GHSR antagonist that attenuates ghrelin signaling. Here, we measured plasma ghrelin and LEAP2 levels in a cohort of cognitively normal individuals older than 60 and found that LEAP2 increased with age while ghrelin (also referred to in literature as “acyl-ghrelin”) marginally declined. In this cohort, plasma LEAP2/ghrelin molar ratios were inversely associated with Mini-Mental State Examination scores. Studies in mice showed an age-dependent inverse relationship between plasma LEAP2/ghrelin molar ratio and hippocampal lesions. In aged mice, restoration of the LEAP2/ghrelin balance to youth-associated levels with lentiviral shRNA Leap2 downregulation improved cognitive performance and mitigated various age-related hippocampal deficiencies such as CA1 region synaptic loss, declines in neurogenesis, and neuroinflammation. Our data collectively suggest that LEAP2/ghrelin molar ratio elevation may adversely affect hippocampal function and, consequently, cognitive performance; thus, it may serve as a biomarker of age-related cognitive decline. Moreover, targeting LEAP2 and ghrelin in a manner that lowers the plasma LEAP2/ghrelin molar ratio could benefit cognitive performance in elderly individuals for rejuvenation of memory

    Proton- and ammonium-sensing by histaminergic neurons controlling wakefulness

    Get PDF
    The histaminergic neurons in the tuberomamillary nucleus (TMN) of the posterior hypothalamus are involved in the control of arousal. These neurons are sensitive to hypercapnia as has been shown in experiments examining c-Fos expression, a marker for increased neuronal activity. We investigated the mechanisms through which TMN neurons respond to changes in extracellular levels of acid/CO2. Recordings in rat brain slices revealed that acidification within the physiological range (pH from 7.4 to 7.0), as well as ammonium chloride (5 mM), excite histaminergic neurons. This excitation is significantly reduced by antagonists of type I metabotropic glutamate receptors and abolished by benzamil, an antagonist of acid-sensing ion channels (ASICs) and Na+/Ca2+ exchanger, or by ouabain which blocks Na+/K+ ATPase. We detected variable combinations of 4 known types of ASICs in single TMN neurons, and observed activation of ASICs in single dissociated TMN neurons only at pH lower than 7.0. Thus, glutamate, which is known to be released by glial cells and orexinergic neurons, amplifies the acid/CO2-induced activation of TMN neurons. This amplification demands the coordinated function of metabotropic glutamate receptors, Na+/Ca2+ exchanger and Na+/K+ ATPase. We also developed a novel HDC-Cre transgenic reporter mouse line in which histaminergic TMN neurons can be visualized. In contrast to the rat, the mouse histaminergic neurons lacked the pH 7.0-induced excitation and displayed only a minimal response to the mGluR I agonist DHPG (0.5 μM). On the other hand, ammonium-induced excitation was similar in mouse and rat. These results are relevant for the understanding of the neuronal mechanisms controlling acid/CO2-induced arousal in hepatic encephalopathy and obstructive sleep apnoea. Moreover, the new HDC-Cre mouse model will be a useful tool for studying the physiological and pathophysiological roles of the histaminergic system

    Ghrelin activates hypophysiotropic corticotropin-releasing factor neurons independently of the arcuate nucleus

    Get PDF
    Previous work has established that the hormone ghrelin engages the hypothalamic-pituitary-adrenal neuroendocrine axis via activation of corticotropin-releasing factor (CRF) neurons of the hypothalamic paraventricular nucleus (PVN). The neuronal circuitry that mediates this effect of ghrelin is currently unknown. Here, we show that ghrelin-induced activation of PVN CRF neurons involved inhibition of γ-aminobutyric acid (GABA) inputs, likely via ghrelin binding sites that were localized at GABAergic terminals within the PVN. While ghrelin activated PVN CRF neurons in the presence of neuropeptide Y (NPY) receptor antagonists or in arcuate nucleus (ARC)-ablated mice, it failed to do it so in mice with ghrelin receptor expression limited to ARC agouti gene related protein (AgRP)/NPY neurons. These data support the notion that ghrelin activates PVN CRF neurons via inhibition of local GABAergic tone, in an ARC-independent manner. Furthermore, these data suggest that the neuronal circuits mediating ghrelin's orexigenic action vs. its role as a stress signal are anatomically dissociated.Instituto Multidisciplinario de Biología CelularLaboratorio de Análisis de Imágene

    Circulating ghrelin acts on GABA neurons of the area postrema and mediates gastric emptying in male mice

    Get PDF
    Ghrelin is known to act on the area postrema (AP), a sensory circumventricular organ located in the medulla oblongata that regulates a variety of important physiological functions. However, the neuronal targets of ghrelin in the AP and their potential role are currently unknown. In this study, we used wild-type and genetically modified mice to gain insights into the neurons of the AP expressing the ghrelin receptor [growth hormone secretagogue receptor (GHSR)] and their role. We show that circulating ghrelin mainly accesses the AP but not to the adjacent nucleus of the solitary tract. Also, we show that both peripheral administration of ghrelin and fasting induce an increase of c-Fos, a marker of neuronal activation, in GHSR-expressing neurons of the AP, and that GHSR expression is necessary for the fasting-induced activation of AP neurons. Additionally, we show that ghrelin-sensitive neurons of the AP are mainly γ-aminobutyric acid (GABA)ergic, and that an intact AP is required for ghrelin-induced gastric emptying. Overall, we show that the capacity of circulating ghrelin to acutely induce gastric emptying in mice requires the integrity of the AP, which contains a population of GABA neurons that are a target of plasma ghrelin.Instituto Multidisciplinario de Biología CelularFacultad de Ciencias Veterinaria

    Leptin signaling in Kiss1 neurons arises after pubertal development

    Get PDF
    The adipocyte-derived hormone leptin is required for normal pubertal maturation in mice and humans and, therefore, leptin has been recognized as a crucial metabolic cue linking energy stores and the onset of puberty. Several lines of evidence have suggested that leptin acts via kisspeptin expressing neurons of the arcuate nucleus to exert its effects. Using conditional knockout mice, we have previously demonstrated that deletion of leptin receptors (LepR) from kisspeptin cells cause no puberty or fertility deficits. However, developmental adaptations and system redundancies may have obscured the physiologic relevance of direct leptin signaling in kisspeptin neurons. To overcome these putative effects, we re-expressed endogenous LepR selectively in kisspeptin cells of mice otherwise null for LepR, using the Cre-loxP system. Kiss1-Cre LepR null mice showed no pubertal development and no improvement of the metabolic phenotype, remaining obese, diabetic and infertile. These mice displayed decreased numbers of neurons expressing Kiss1 gene, similar to prepubertal control mice, and an unexpected lack of re-expression of functional LepR. To further assess the temporal coexpression of Kiss1 and Lepr genes, we generated mice with the human renilla green fluorescent protein (hrGFP) driven by Kiss1 regulatory elements and crossed them with mice that express Cre recombinase from the Lepr locus and the R26-tdTomato reporter gene. No coexpression of Kiss1 and LepR was observed in prepubertal mice. Our findings unequivocally demonstrate that kisspeptin neurons are not the direct target of leptin in the onset of puberty. Leptin signaling in kisspeptin neurons arises only after completion of sexual maturation.National Institutes of Health, R01HD061539National Institutes of Health, R01HD69702National Institutes of Health, R01DA024680National Institutes of Health, R01MH085298National Institutes of Health, K01DK087780National Institutes of Health, DK081182-01National Institutes of Health, UL1RR02492
    corecore