
The role of ghrelin in reward-based eating

Mario Perelló, Ph.D.1 and Jeffrey M. Zigman, M.D., Ph.D.2,3

1Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology (IMBICE-CONICET/
CICPBA), Calle 526 s/n entre 10 y 11, La Plata, Buenos Aires, Argentina 1900
2Department of Internal Medicine (Divisions of Hypothalamic Research and of Endocrinology &
Metabolism), The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd.,
Dallas, Texas 75390-9077
3Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry
Hines Blvd., Dallas, Texas 75390-9077

Abstract
The peptide hormone ghrelin acts in the central nervous system as a potent orexigenic signal. Not
only is ghrelin recognized as playing an important role in feeding circuits traditionally thought of
as affecting body weight homeostasis, but an accumulating number of scientific studies now have
identified ghrelin as being a key regulator of reward-based, hedonic eating behaviors. In the
current article, we review ghrelin’s orexigenic actions, the evidence linking ghrelin to food reward
behavior, potential mechanisms by which ghrelin mediates reward-based eating behavior, and
those studies suggesting an obligatory role for ghrelin in the changed eating behaviors induced by
stress.
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Ghrelin is a peptide hormone synthesized mainly by a distinct group of endocrine cells
located within the gastric oxyntic mucosa (1). Ghrelin acts via the growth hormone
secretagogue receptor (GHSR), a G-protein coupled receptor initially identified as the target
of synthetic growth hormone secretagogues (2). GHSRs are expressed in numerous brain
nuclei and peripheral tissues, where they mediate ghrelin’s actions on a diverse group of
processes and behaviors (3). These include roles in growth hormone secretion, blood
glucose homeostasis, locomotor activity, gastrointestinal prokinesis and mood-related
behaviors, among many others (3–5). In addition, ghrelin is essential for body weight and
energy balance regulation (6–9) and is recognized as the only known orexigenic peptide
hormone (3). Ghrelin was initially shown to stimulate food intake by activating homeostatic
hypothalamic circuits (10). These homeostatic circuits provide a means by which ghrelin
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and other signals of energy availability and gastrointestinal tract activity can interact with
the central nervous system to modulate food intake and energy expenditure and ultimately,
maintain a set body weight (11). Recent evidence shows that ghrelin also regulates
mesolimbic circuitries and, as a consequence, various non-homeostatic, hedonic aspects of
eating (12–14). Hedonic, or reward-based eating, involves behaviors which lead to the
consumption of pleasurable foods, which individuals are motivated to efficiently obtain (15).
Here, we review the role of ghrelin as an orexigenic hormone, with a focus on ghrelin’s
impact on reward-based eating. We also discuss physiological implications of this action and
in particular, the role of ghrelin as a mediator of stress-induced, reward-based eating
behaviors.

Orexigenic actions of ghrelin and its relationship with body weight
Ghrelin’s effects on eating are well-established [as reviewed (8)]. Ghrelin both signals and
helps respond to states of energy insufficiency. Circulating ghrelin increases before meals to
levels that stimulate food intake when generated by peripheral administration of the
hormone (8). Its levels also rise following food deprivation and after weight loss linked to
exercise and cachexia (16–22). Infusions of ghrelin or GHSR agonists increase body weight
via pro-orexigenic actions and/or decreases in energy expenditure (10, 23–26). Ghrelin’s
orexigenic actions are rapid and trigger eating even at times of minimal spontaneous food
intake (8). After an overnight fast, ghrelin antagonists block rebound overeating (27).
Chronic treatment with exogenous ghrelin also enhances feeding and body weight gain,
suggesting that ghrelin participates in long-term body weight regulation (25). Although
some studies have demonstrated little to no effect of genetic or pharmacologic interference
with ghrelin signaling on body weight and food intake (28, 29), other studies suggest that
intact ghrelin signaling is required for normal eating behaviors and body weight responses,
especially to hedonically rewarding high-fat diets (HFD) (6, 7, 27, 30). For instance, GHSR
deficiency reduces food intake, body weight and adiposity upon early HFD exposure (6, 30).
Ghrelin knockout mice exposed to HFD early in life show a similar phenotype (7). Certain,
but not all, of the published GHSR-deficient mouse models also manifest reduced body
weights upon exposure to standard chow diet (6, 9, 31). Interestingly, in one study, while
genetic deletion of ghrelin or GHSR alone resulted in no observed change in body weight
upon exposure to standard chow, genetic deletion of both did decrease body weight,
suggesting the existence of other molecular components of the ghrelin signaling system (9).

Ghrelin is also relevant for human body weight regulation (32). Ghrelin administration
increases food intake in healthy individuals, and pre-prandial ghrelin surges are observed as
many times per day as meals are provided to subjects exposed to habituated feeding
schedules (8, 17). In addition, ghrelin appears relevant for some types of human obesity
(32). Ghrelin levels rise in individuals after weight loss induced by dieting, and such may
contribute to the rebound weight gain commonly observed in dieters (33). Also, the marked
and prolonged weight loss induced by Roux-en-Y gastric bypass (RYGB) surgery is thought
by many to be enhanced by post-bypass reductions in circulating ghrelin. As 1st reported in
2002, 24-hr ghrelin profiles of RYGB subjects were >70% lower than those of obese
controls (33). Most subsequent RYGB trials have confirmed this atypical, relative ghrelin
deficiency, as opposed to the rise in ghrelin observed with dieting or other instances of
energy insufficiency (34–36). While most obese individuals have reduced baseline levels of
circulating ghrelin as compared to normal subjects (32), in Prader-Willi Syndrome, elevated
ghrelin levels exist and have been postulated by some to contribute to the unrelenting
hyperphagia and weight gain characteristic of this syndromic form of obesity (37, 38).

These findings have supported the notion that blocking ghrelin action may be an effective
strategy to reduce body weight or prevent the development of obesity (39). In fact, reduction
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of bioavailable ghrelin or daily administration of GHSR antagonists to diet-induced obese
mice lower body weights and reduce food intake (39–42). Similarly, administration to mice
of an antagonist of ghrelin O-acyltransferase, which catalyzes a crucial post-translational
modification of ghrelin, markedly reduces weight gain in response to a diet enriched in
medium chain triglycerides (43).

On the opposite end of the spectrum, rodents and/or humans with cachexia of various
etiologies and anorexia nervosa have high circulating ghrelin (19, 22). We hypothesize that
the endogenous ghrelin elevations associated with cachexia and anorexia nervosa serve a
protective function against what otherwise would be a more severe phenotype. In such
regard, ghrelin would be acting in a similar protective role as has been postulated during
psychosocial stress; namely, the high ghrelin induced by stress helps to minimize stress-
associated depression-like behaviors (see below for further discussion) (44). In fact,
although elevations in ghrelin occur naturally in the setting of cachexia induced, for
instance, by administration of the chemotherapeutic agent cisplatin to rats or the
implantation of sarcomas in rats, pharmacologically raising ghrelin levels in these models
even further improves lean body mass and increases food consumption (22, 45). Therefore,
alterations in the ghrelin system appear relevant for different extremes of body weight, and
future therapies for a variety of body weight disorders may include those that target ghrelin-
based eating behaviors.

Ghrelin’s effects on hedonic aspects of eating
The mechanisms by which ghrelin promotes food intake are multifaceted, and include not
only stimulating intake of food via homeostatic mechanisms, but also enhancing the
rewarding properties of certain foods such that the host puts forth extra effort to efficiently
obtain the pleasurable food (27, 46–51). As discussed below, GHSR expression in and
ghrelin interaction with several brain regions involved in reward processing support the
concept that ghrelin regulates these extra-homeostatic aspects of eating (12, 52).
Observation of these expression patterns has led investigators to better characterize ghrelin’s
effects on food reward behavior.

Several studies have examined a role for ghrelin in defining food preference. Ghrelin shifts
food preference towards diets rich in fat (25, 49). Similarly, ghrelin increases consumption
of palatable saccharin solution and increases preference for saccharin-flavored foods in
wild-type but not GHSR-deficient mice (47). Reinforcing these findings, GHSR-deficient
mice and GHSR antagonist-treated rats consume less peanut butter and Ensure® but do not
decrease consumption of regular chow in a free choice protocol (48). Likewise, GHSR
antagonist temporarily and selectively decreases intake by rats of 5% sucrose solution in a
sucrose vs. water two-bottle-choice drinking protocol (53). GHSR antagonist also blunts
saccharin solution self-administration by mice (53).

In addition to enhancing preference for sweet and fatty foods, ghrelin mediates more
complex, reward-based eating behaviors. For instance, in the food conditioned place
preference (CPP) test, the amount of time animals spend in an environment with which they
have been conditioned to find a pleasurable diet is compared to time spent in a distinct
environment associated with regular chow or no food. Pharmacologic administration of
ghrelin and endogenous increases in ghrelin induced by caloric restriction both enable
acquisition of CPP for HFD (27, 46, 50). Conversely, wild-type mice treated with GHSR
antagonist during the conditioning period and GHSR-null mice both failed to show CPP for
HFD normally observed under calorie restriction (27). GHSR antagonist also blocks CPP for
chocolate pellets in satiated rats (48).
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Ghrelin’s effects on reward-based eating behavior also have been assessed using operant
lever-pressing or operant nose-poking, which focus on motivational aspects of reward (27,
51, 54). Ghrelin increases operant lever-pressing for sucrose, peanut-butter-flavored sucrose,
and HFD pellets in rodents (27, 51, 55, 56). Conversely, GHSR antagonist reduces operant
responding for 5% sucrose solution (53). Of note, diet-induced obesity reduces ghrelin-
stimulated operant responding for food rewards (51). In such regard, the blunting effect of
diet-induced obesity on ghrelin’s mediation of food reward behavior is similar to the
resistance to ghrelin’s orexigenic actions observed in diet-induced obese mice (57, 58).

Ghrelin’s actions on food reward also are relevant in humans. In particular, ghrelin
administration to human subjects during functional magnetic resonance imaging increases
the neural response to food pictures in several brain regions implicated in hedonic feeding,
including the amygdala, orbitofrontal cortex, hippocampus, striatum, and ventral tegmental
area (VTA) (59, 60).

Neuronal substrates and circuits mediating ghrelin’s actions on food
reward

Over the last decade, several investigators have worked to determine the neuronal
populations and intracellular signaling cascades responsible for modulating ghrelin’s actions
on homeostatic eating, growth hormone release and blood glucose homeostasis [as reviewed
in (2, 61)]. The neuronal substrates and circuits mediating ghrelin-induced food reward
behaviors are just beginning to be elucidated, and will be discussed here (Figure 1).

Dopamine
Dopaminergic neurons emanating from the VTA project to the nucleus accumbens (NAc),
amygdala, prefrontal cortex and hippocampus (11, 15). These projections comprise the
mesolimbic pathway and strongly drive reward behaviors of various types. Of relevance,
GHSRs are highly expressed in the VTA, including dopaminergic VTA neurons (12, 52).
Upon ghrelin administration, VTA-lesioned rats specifically consume less peanut butter but
eat equal amounts of regular chow, as compared to sham-lesioned animals(48). VTA-
lesioned rats spend less time than sham-lesioned rats exploring tubes containing peanut
butter in response to intracerebroventricular ghrelin administration (48). Selective
knockdown of GHSR expression in transgenic rats expressing an antisense GHSR transcript
in tyrosine hydroxylase-containing cells (which include the dopaminergic VTA neurons)
decreases food intake (62). Also, chronic ghrelin administration influences gene expression
of several dopamine receptors within the VTA-NAc circuit (63).

Ghrelin can directly affect dopaminergic VTA neuronal activity (12, 52). For instance,
exogenous ghrelin induces dopamine release from VTA neurons that project to the NAc, and
ghrelin increases action potential frequency in these neurons (5, 12, 14, 64, 65).
Furthermore, intra-VTA administration of ghrelin and/or GHSR antagonists modulates
intake of freely-available regular chow, food preference, motivated food reward behavior,
and other actions including locomotion. As such, ghrelin microinjection into the VTA
acutely increases intake of freely-available food, while VTA microinjection of a GHSR
antagonist decreases food intake in response to peripheral ghrelin (12, 13). Chronic ghrelin
administration into the VTA dose-dependently increases intake of freely-available regular
chow and increases body weight (66). Direct ghrelin microinjection into the VTA also
increases intake of peanut butter over regular chow (48). Similarly, intra-VTA
administration of a GHSR antagonist selectively reduces intake of HFD, and has no effect
on intake of less-preferred protein-rich or carbohydrate-rich diets, to which they have equal
access (66). VTA microinjection of ghrelin increases operant lever-pressing for sucrose
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rewards and banana-flavored pellets (12, 13, 48, 55, 56, 67), while VTA microinjection of a
GHSR antagonist decreases operant responding for sucrose normally induced by an
overnight fast (12, 55). Analogous effects are observed in food-restricted rats, in which
chronic intra-VTA ghrelin delivery enhances while chronic intra-VTA GHSR antagonist
delivery blunts operant responding for chocolate-flavored pellets (66). Furthermore, striatal
dopamine depletion, as induced by unilateral VTA delivery of the neurotoxin 6-
hydroxydopamine, reduces intra-VTA-administered ghrelin’s effects on operant lever-
pressing for food rewards (67). The locomotor stimulatory effects of ghrelin also are
blocked upon intra-VTA GHSR antagonist administration (68).

In studies to investigate the role of direct ghrelin action on the VTA, we crossed GHSR-null
mice, which contain a loxP-flanked transcriptional blocking cassette inserted into the GHSR
gene, to mice in which Cre recombinase expression is driven by the tyrosine hydroxylase
promoter (50). Mice containing two copies of the GHSR-null allele and one copy of the Cre
transgene express GHSRs selectively in tyrosine hydroxylase-containing cells normally
programmed to express both GHSR and tyrosine hydroxylase. These include, although are
not restricted to, a subset of VTA dopaminergic neurons. Ghrelin signaling specifically in
these predominantly dopaminergic neurons not only mediates administered ghrelin’s ability
to stimulate intake of freely-available regular chow, but also is sufficient to mediate its
actions on CPP for HFD (50). Altogether, these many studies highly suggest a critical role of
GHSR-containing dopaminergic VTA neurons for ghrelin’s actions on food intake and food
reward.

Opioids
Opioids likely play a prominent regulatory role for ghrelin-responsive VTA dopaminergic
neurons. Prior intracerebroventricular administration of the μ-opioid receptor-preferring
antagonist, naltrexone, blocks operant responding for sucrose pellets by rats given ghrelin
intracerebroventricularly (56). More specifically, central ghrelin infusion increases μ-opioid
receptor mRNA expression within the VTA (56). Also, operant responding for sucrose
induced by direct VTA microinjection of ghrelin is blocked upon prior VTA microinjection
of naltrexone (56). Interestingly, while increased ghrelin-induced intake of freely-available
chow also is blocked by naltrexone when both compounds are administered
intracerebroventricularly, such is not observed upon direct VTA microinjection of the
compounds (56). As such, opioids are critical in ghrelin’s actions on both food intake and
food reward, but the anatomic locations of the circuits controlling these processes are likely
at least partly distinct.

NPY
Ghrelin-responsive VTA neurons may also be impacted by arcuate hypothalamic
neuropeptide Y (NPY) neurons. Similar to the aforementioned naltrexone studies, the NPY-
Y1 receptor antagonist LY1229U91 (LY) blocks ghrelin-induced operant responding for
sucrose pellets when both LY and ghrelin are administered intracerebroventricularly,
although LY is ineffective upon intra-VTA administration of both it and ghrelin (56). In
contrast to naltrexone, LY blunts ghrelin-stimulated intake of freely-available chow whether
both are injected intracerebroventricularly or intra-VTA (56). Therefore, just as was
observed for opioids, NPY signaling is important to ghrelin’s orexigenic actions and its
actions on food reward, although the circuits controlling these processes are at least partly
anatomically distinct.

Orexins
Another likely input into the ghrelin-VTA circuit are the orexins (hypocretins). Orexins are
well-characterized neuropeptide participants in rewarding behaviors. Ghrelin action on food
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reward requires intact signaling by orexin, as evidenced by the failure of orexin-knockout
mice or wild-type mice given orexin receptor 1 antagonist SB-334867 intraperitoneally to
acquire CPP for HFD in response to ghrelin treatment (27). Once again demonstrating the
complexity of these neuronal circuits, SB-334867-pretreated mice and orexin-deficient mice
both display full orexigenic responses to ghrelin (27).

nAChR
Ghrelin’s actions on food reward also are impacted by cholinergic signaling. Intraperitoneal
administration of the non-selective, centrally-active nicotine acetylcholine receptor (nAchR)
antagonist mecamylamine decreases fasting-induced food intake in rodents and decreases
the ability of a chocolate-based food reward to condition a place preference (69). More
specifically, intraperitoneal injection of mecamylamine reduces intracerebroventricularly-
administered ghrelin-induced food intake in rats (69). Intraperitoneal administration of
mecamylamine or 18-methoxycoronaridine, a selective antagonist of α3β4 nicotinic
receptors, decreases intracerebroventricular ghrelin-induced dopamine overflow in the NAc
(5), intra-VTA administered ghrelin-induced dopamine overflow in the NAc (64), and/or
intra-VTA-administered ghrelin-induced food intake (69). Also, chronic
intracerebroventricular ghrelin modulates nAChRb2 and nAChRa3 gene expression in
mesolimbic pathways (63). The most direct evidence of cholinergic influence on ghrelin’s
mediation of food reward comes from a study in which mecamylamine blunted ghrelin-
induced acquisition of food CPP (47), and another in which peripheral administration of 18-
methoxycoronaridine blocked intra-VTA ghrelin-induced increases in 5% sucrose solution
intake during a two-bottle open access protocol (64).

Studies on the role of nAChR signaling in ghrelin action have uncovered yet another likely
direct central site of action – the laterodorsal tegmental area (LDTg) –for ghrelin’s effects
on food reward. The LDTg is a known site of GHSR expression (52, 69, 70), wherein GHSR
mRNA co-localizes with choline acetyltransferase mRNA (69). Intra-VTA administration of
the nAChR antagonist, α-conotoxin MII, blocks NAc dopamine overflow induced by LDTg-
administered ghrelin (65). Thus, for at least some of its effects, ghrelin may act directly on
LDTg cholinergic neurons that project to the VTA.

Glutamate
Pharmacological suppression of glutamatergic signaling, as achieved by intra-VTA
administration of the N-methyl-D-aspartic acid receptor antagonist AP5, blocks ghrelin-
induced dopamine overflow in the NAc and ghrelin-induced locomotor stimulation (68).
Thus it is likely that glutamatergic input to the VTA also affects ghrelin’s ability to
modulate food reward behavior.

Endocannabinoids
Endocannabinoids increase food intake and motivation to consume palatable foods (71).
Central injection of ghrelin to endocannabinoid receptor type 1 knockout mice fails to
increase food intake, suggesting that the endocannabinoid signaling system is necessary for
ghrelin’s orexigenic effect and may also mediate hedonic actions of ghrelin (72).

Role of ghrelin as a mediator of stress-induced complex eating behaviors
The physiologic significance of ghrelin’s effects on food reward seems most apparent during
situations in which plasma ghrelin is normally elevated, such as periods of energy
insufficiency (73, 74). For instance, CPP for HFD is induced in wild-type mice by prolonged
caloric restriction (27, 54), while GHSR antagonist administration to wild-type mice or
alternatively, genetic deletion of GHSRs, prevents this caloric restriction-associated food
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reward behavior (27, 54). GHSR antagonist administration also prevents caloric restriction-
associated operant lever pressing for sucrose in rats (63). One might argue that the ghrelin
system has evolved to help animals cope with states of energy insufficiency by favoring
reward-based eating of palatable calorie dense foods.

Elevations of ghrelin also are observed upon stress (44, 75–81). For instance, elevations in
gastric ghrelin gene expression and plasma ghrelin occur in rodents’ responses to tail pinch
stress and water avoidance stress (75, 76). Plasma ghrelin elevations also occur in rodents
stressed by exposure to a continuously flooded cage or to cold environment (44, 50, 77, 82).
The chronic social defeat stress (CSDS) procedure, which subjects male mice to repeated
bouts of social subordination by an older and larger aggressor, leads to sustained plasma
ghrelin elevations (44, 50, 83). Similarly, exposure of mice to a 14-day chronic
unpredictable stress protocol raises plasma ghrelin (81). Humans subjected acutely to
psychosocial stress or to the standardized trier social stress test also display increased
plasma ghrelin (78, 80). The mechanisms responsible for this stress-associated increase in
circulating ghrelin have not yet been determined but may be mediated via a
sympathoadrenal response, as suggested by studies linking activation of the sympathetic
nervous system and/or release of catecholamines to ghrelin secretion and to a coordinated
behavioral stress response (84–86).

Most humans upon stress report a change in their eating habits – with some eating more and
some eating less than prior to the stress (87, 88). Furthermore, humans experience increases
in the intake of highly palatable foods independent of their general food intake response to
the stress (87, 88). The complex eating behaviors that are associated with stress likely
contribute to the increased prevalence of overweight and obese among individuals exposed
to stress. Interestingly, stress-induced elevations in plasma ghrelin found in “high emotional
eaters” -- so-called due to their experienced food cravings and increased consumption of
foods high in carbohydrates and fats in response to negative emotions and stress – fail to
decline acutely following food consumption (80). This is unlike the ghrelin response
observed upon food intake in individuals who report little change in their eating habits upon
stress (80), and thus further suggests a role for ghrelin in stress-based eating behaviors.

We have used CSDS to specifically investigate the role of ghrelin on stress-induced
alterations in food reward behavior. CSDS, which as mentioned above elevates circulating
ghrelin, is associated with hyperphagia of freely-available regular chow both during and for
at least one month after the defeat period (44, 89, 90). This hyperphagia, which is not
observed in mice lacking GHSRs, may contribute to the higher body weight gain observed
in CSDS-exposed wild-type mice (44, 89, 90). Not only does CSDS induce a hyperphagic
response in wild-type mice, but it also increases CPP for HFD (50). Such a stress-induced
food reward response relies on ghrelin signaling, as CPP for HFD is not observed in CSDS-
exposed GHSR-null mice (50). Furthermore, expression of GHSRs selectively in tyrosine
hydroxylase-containing neurons (which, as described above, include dopaminergic VTA
neurons) is permissive for the induction of hedonic eating behaviors by the CSDS protocol
(50). It is also possible that glucocorticoids play a supportive role in ghrelin’s mediation of
stress-induced reward-based eating, as higher corticosterone levels are observed in wild-type
mice exposed to CSDS than in similarly-treated GHSR-null littermates. This seems relevant
to the differences in stress-associated, reward-based eating observed in wild-type versus
GHSR-null littermates since glucocorticoid secretion intensifies motivated behaviors and
increases intake of highly palatable foods (88).

The above CSDS findings in wild-type and GHSR-null animals are in contrast to those
observed in a chronic unpredictable stress mouse model of chronic stress (81). Although
CSDS and chronic unpredictable stress both elevate plasma ghrelin, chronic unpredictable
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stress-exposed wild-type mice experience decreased food intake and body weight gain over
the duration of the treatment period, while similarly-treated GHSR-deficient mice lack
changes in these parameters (81). Further work is needed to clarify the potentially
differential efficacies of ghrelin on food intake, food reward and body weight among
different rodent models of stress-based eating (91–96) and among humans with differential
eating behavioral responses to stress.

Conclusions and perspectives
Recent studies have revealed several intricacies regarding ghrelin’s roles in modulation of
food intake and the rewarding value of palatable foods. Most highlight the relevance of
mesolimbic pathways in these effects. Interestingly, the effects of ghrelin on the mesolimbic
system also extend to drug- and alcohol-driven behaviors, suggesting that ghrelin may be a
link between food deprivation and/or stress with increases in the hedonic value of a wide
range of rewards [as reviewed in (97–99)]. Ghrelin itself is known to be inherently
rewarding (100). Mesolimbic pathways also are important for ghrelin’s effects on mood. In
particular, using mouse models, we have demonstrated that increasing circulating ghrelin
levels by 10 days of calorie restriction or by acute subcutaneous injection produces an
antidepressant-like response in the forced swim test (44). However, caloric restriction no
longer induces this response in mice lacking GHSRs, suggesting that interference with
ghrelin signaling negates the antidepressant-like behaviors associated with calorie restriction
(44). Also, upon exposure to CSDS, GHSR-null mice manifest greater social isolation
(another marker of depressive-like behavior) than do wild-type littermates (44). Thus, we
have suggested that activation of ghrelin signaling pathways in response to chronic stress
may be a homeostatic adaptation that helps individuals cope with stress. In addition to the
other processes we were able to attribute to ghrelin-responsive catecholaminergic neurons,
direct ghrelin signaling via GHSRs localized to catecholaminergic neurons (including those
aforementioned VTA dopaminergic neurons) also is sufficient for the usual mood responses
following chronic stress (50).

Given these many actions of ghrelin and seemingly overlapping neuronal circuits, one might
envision a scenario whereby administration of ghrelin mimetic to individuals with anorexia
nervosa undergoing re-feeding therapy would prevent relative drops in circulating ghrelin.
The ensuing sustained tone in ghrelin-engaged circuits would then help stimulate food
intake, minimize what might otherwise be worsened depression (a frequent co-morbid
condition among anorexia nervosa subjects), and lead to a better sense of well-being (due to
the inherent rewarding properties of ghrelin).

Conversely, the mesolimbic pathways regulating at least some of ghrelin’s effects on
homeostatic eating, hedonic eating, and mood may limit its effectiveness as a weight loss
drug target. The intertwined nature of neuronal pathways mediating the coordinated
behavioral stress response may predict the same fate as the anti-obesity drug Rimonabant,
which did not gain FDA approval due to increased reports of severe depression, for other
candidate anti-obesity compounds. Such seemingly closely linked behaviors highlight even
further the importance of studies aimed at dissecting the neuroanatomical pathways
controlling ghrelin’s actions on eating behavior linked to body weight homeostasis, reward,
stress and mood. Despite this potential drawback, we believe that all of the available data
linking ghrelin to food reward behavior strongly support the concept of targeting the ghrelin
system as a plausible strategy to treat and/or prevent the development of extremes of body
weight.
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Figure 1. Model of ghrelin action on the mesolimbic reward circuitry in the rodent brain
Depicted is a sagittal view of the rodent brain in which regions implicated in ghrelin’s
regulation of the rewarding value of food are highlighted. Signaling within dopaminegic
neurons of the ventral tegmental area (VTA) mediate ghrelin’s actions on food reward.
Ghrelin induces overflow of dopamine within the nucleus accumbens (NAc). VTA neurons
also send projections to the lateral hypothalamic area (LHA), amygdala (Amyg),
hippocampus (Hipp) and medial prefrontal cortex (mPFC), although engagement of these
brain regions by ghrelin acting via the VTA is currently unclear. A role for cholinergic
(ACh) neurons emanating from the laterodorsal tegmental area (LDTg) in the regulation of
this circuitry has also been proposed. Other signals, such as NPY, orexins, glutamate and
endocannabinoids, have been shown to modulate ghrelin’s action on food reward, although
the anatomic locations of neurons producing these signals remain unclear. Solid lines and
dotted lines represent established and hypothesized connections, respectively.
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