38 research outputs found

    Magnetization reversal behavior in complex shaped Co nanowires: a nanomagnet morphology optimization

    Full text link
    A systematic micromagnetic study of the morphological characteristic effects over the magnetic static properties of Co-based complex shaped nanowires is presented. The relevance of each characteristic size (i.e. length L, diameter d, and size of the nanowires head T) and their critical values are discussed in the coercive field optimization goal. Our results strongly confirms that once the aspect ratio (L/d) of the nanowire is bigger than around 10, the length is no more the pertinent parameter and instead the internal diameter and the shape of the nanowires play a key role. We attribute this behavior to the non uniform distribution of the demagnetizing field which is localized in the nanowires head and acts as a nucleation point for the incoherent magnetization reversal. Finally, angular dependence of the magnetization are simulated and compared to the case of a prolate spheroid for all considered morphologies.Comment: 7 pages, 6 figure

    Voltage-induced strain control of the magnetic anisotropy in a Ni thin film on flexible substrate

    Full text link
    Voltage-induced magnetic anisotropy has been quantitatively studied in polycrystalline Ni thin film deposited on flexible substrate using microstrip ferromagnetic resonance. This anisotropy is induced by a piezoelectric actuator on which the film/substrate system was glued. In our work, the control of the anisotropy through the applied elastic strains is facilitated by the compliant elastic behavior of the substrate. The in-plane strains in the film induced by the piezoelectric actuation have been measured by the digital image correlation technique. Non-linear variation of the resonance field as function of the applied voltage is found and well reproduced by taking into account the non linear and hysteretic variations of the induced in-plane strains as function of the applied voltage. Moreover, we show that initial uniaxial anisotropy attributed to compliant substrate curvature is fully compensated by the voltage induced anisotropy.Comment: 7 pages, 6 figures, published in the Journal of Applied Physic

    Morphology control of the magnetization reversal mechanism in Co80Ni20 nanomagnets

    Full text link
    Nanowires with very different size, shape, morphology and crystal symmetry can give rise to a wide ensemble of magnetic behaviors whose optimization determines their applications in nanomagnets. We present here an experimental work on the shape and morphological dependence of the magnetization reversal mechanism in weakly interacting Co80Ni20 hexagonal-close-packed nanowires. Non-agglomerated nanowires (with length L and diameter d) with a controlled shape going from quasi perfect cylinders to diabolos, have been studied inside their polyol solution in order to avoid any oxidation process. The coercive field HC was found to follow a standard behavior and to be optimized for an aspect ratio L/d > 15. Interestingly, an unexpected behavior was observed as function of the head morphology leading to the strange situation where a diabolo shaped nanowire is a better nanomagnet than a cylinder. This paradoxical behavior can be ascribed to the growth-competition between the aspect ratio L/d and the head morphology ratio d/D (D being the head width). Our experimental results clearly show the importance of the independent parameter (t = head thickness) that needs to be considered in addition to the shape aspect ratio (L/d) in order to fully describe the nanomagnets magnetic behavior. Micromagnetic simulations well support the experimental results and bring important insights for future optimization of the nanomagnets morphologyComment: 7 pages, 5 figure

    Numerical calculation of magnetic form factors of complex shape nano-particles coupled with micromagnetic simulations

    Get PDF
    We investigate the calculation of the magnetic form factors of nano-objects with complex geometrical shapes and non homogeneous magnetization distributions. We describe a numerical procedure which allows to calculate the 3D magnetic form factor of nano-objects from realistic magnetization distributions obtained by micromagnetic calculations. This is illustrated in the canonical cases of spheres, rods and platelets. This work is a first step towards a 3D vectorial reconstruction of the magnetization at the nanometric scale using neutron scattering techniques.Comment: 7 pages, 5 figures. To appear in Physics Procedi

    Ordered arrays of magnetic nanowires investigated by polarized small-angle neutron scattering

    Full text link
    Polarized small-angle neutron scattering (PSANS) experimental results obtained on arrays of ferromagnetic Co nanowires (ϕ≈13\phi\approx13 nm) embedded in self-organized alumina (Al2_{2}O3_{3}) porous matrices are reported. The triangular array of aligned nanowires is investigated as a function of the external magnetic field with a view to determine experimentally the real space magnetization M⃗(r⃗)\vec{M}(\vec{r}) distribution inside the material during the magnetic hysteresis cycle. The observation of field-dependentSANSintensities allows us to characterize the influence of magnetostatic fields. The PSANS experimental data are compared to magnetostatic simulations. These results evidence that PSANS is a technique able to address real-space magnetization distributions in nanostructured magnetic systems. We show that beyond structural information (shape of the objects, two-dimensional organization) already accessible with nonpolarized SANS, using polarized neutrons as the incident beam provides information on the magnetic form factor and stray fields \textgreek{m}0Hd distribution in between nanowires.Comment: 13 pages, 10 figures, submitted to Phys. Rev.

    Micro-strip ferromagnetic resonance study of strain-induced anisotropy in amorphous FeCuNbSiB film on flexible substrate

    Full text link
    The magnetic anisotropy of a FeCuNbSiB (Finemet) film deposited on Kapton has been studied by micro-strip ferromagnetic resonance technique. We have shown that the flexibility of the substrate allows a good transmission of elastic strains generated by a piezoelectric actuator. Following the resonance field angular dependence, we also demonstrate the possibility of controlling the magnetic anisotropy of the film by applying relatively small voltages to the actuator. Moreover, a suitable model taking into account the effective elastic strains measured by digital image correlation and the effective elastic coefficients measured by Brillouin light scattering, allowed to deduce the magnetostrictive coefficient. This latter was found to be positive (λ=16×10−6(\lambda=16\times10^{-6}) and consistent with the usually reported values for bulk amorphous FeCuNbSiB.Comment: 9 pages, 8 figure

    Structural, static and dynamic magnetic properties of CoMnGe thin films on a sapphire a-plane substrate

    Full text link
    Magnetic properties of CoMnGe thin films of different thicknesses (13, 34, 55, 83, 100 and 200 nm), grown by RF sputtering at 400{\deg}C on single crystal sapphire substrates, were studied using vibrating sample magnetometry (VSM) and conventional or micro-strip line (MS) ferromagnetic resonance (FMR). Their behavior is described assuming a magnetic energy density showing twofold and fourfold in-plane anisotropies with some misalignment between their principal directions. For all the samples, the easy axis of the fourfold anisotropy is parallel to the c-axis of the substrate while the direction of the twofold anisotropy easy axis varies from sample to sample and seems to be strongly influenced by the growth conditions. Its direction is most probably monitored by the slight unavoidable angle of miscut the Al2O3 substrate. The twofold in-plane anisotropy field is almost temperature independent, in contrast with the fourfold field which is a decreasing function of the temperature. Finally, we study the frequency dependence of the observed line-width of the resonant mode and we conclude to a typical Gilbert damping constant of 0.0065 for the 55-nm-thick film.Comment: 7 pages, 7 figures, To be published (Journal of Applied Physics

    Exchange bias in Co/CoO core-shell nanowires: Role of the antiferromagnetic superparamagnetic fluctuations

    Full text link
    The magnetic properties of Co (=15 nm, =130nm) nanowires are reported. In oxidized wires, we measure large exchange bias fields of the order of 0.1 T below T ~ 100 K. The onset of the exchange bias, between the ferromagnetic core and the anti-ferromagnetic CoO shell, is accompanied by a coercivity drop of 0.2 T which leads to a minimum in coercivity at ∌100\sim100 K. Magnetization relaxation measurements show a temperature dependence of the magnetic viscosity S which is consistent with a volume distribution of the CoO grains at the surface. We propose that the superparamagnetic fluctuations of the anti-ferromagnetic CoO shell play a key role in the flipping of the nanowire magnetization and explain the coercivity drop. This is supported by micromagnetic simulations. This behavior is specific to the geometry of a 1D system which possesses a large shape anisotropy and was not previously observed in 0D (spheres) or 2D (thin films) systems which have a high degree of symmetry and low coercivities. This study underlines the importance of the AFM super-paramagnetic fluctuations in the exchange bias mechanism.Comment: 10 pages, 10 figures, submitted to Phys. Rev.
    corecore