61 research outputs found

    Developing a Methodology for Creating Flexible Instructional Information Technology Laboratories

    Get PDF
    Many schools - particularly the more dynamic segments of high schools and community colleges - have begun to undertake instruction in the areas of PC repair, networking (vendor-neutral and specific alike), operating systems, wireless technologies, and so forth. For some schools, however, this leap forward has come only with a later realization that there are tremendous startup costs and ongoing expenses associated with such endeavors, especially considering that many of these instructional elements have historically called for independent instructional facilities. From this perspective, institutions may find they have to cut their programmatic vision short in the face of harsher budgetary realities of supporting so many laboratories, or abandon their efforts altogether. In this paper, it is suggested that this scenario does not have to become a reality. Instead, it is proposed that affordable, functional, and practical multipurpose Information Technology (IT) classrooms can be developed when a combination of good initial design and planning, affordable technologies, and mature business models are practiced. With the application of certain methodologies, a system can be created for any institution wishing to develop facilities and the means to support and mature them over time. Often faced with budgetary constraints, space limitations, or uncertain financial support mechanisms, it is becoming important that higher education institutions engaging in the instruction of advanced computing and networking develop a process and methodology for establishing and maintaining computing laboratories that can service a variety of diverse and complex instructional needs

    Tailored biocompatible polyurethane-poly(ethylene glycol) hydrogels as a versatile nonfouling biomaterial

    Get PDF
    Polyurethane-based hydrogels are relatively inexpensive and mechanically robust biomaterials with ideal properties for various applications, including drug delivery, prosthetics, implant coatings, soft robotics, and tissue engineering. In this report, a simple method is presented for synthesizing and casting biocompatible polyurethane-poly(ethylene glycol) (PU-PEG) hydrogels with tunable mechanical properties, nonfouling characteristics, and sustained tolerability as an implantable material or coating. The hydrogels are synthesized via a simple one-pot method using commercially available precursors and low toxicity solvents and reagents, yielding a consistent and biocompatible gel platform primed for long-term biomaterial applications. The mechanical and physical properties of the gels are easily controlled by varying the curing concentration, producing networks with complex shear moduli of 0.82–190 kPa, similar to a range of human soft tissues. When evaluated against a mechanically matched poly(dimethylsiloxane) (PDMS) formulation, the PU-PEG hydrogels demonstrated favorable nonfouling characteristics, including comparable adsorption of plasma proteins (albumin and fibrinogen) and significantly reduced cellular adhesion. Moreover, preliminary murine implant studies reveal a mild foreign body response after 41 days. Due to the tunable mechanical properties, excellent biocompatibility, and sustained in vivo tolerability of these hydrogels, it is proposed that this method offers a simplified platform for fabricating soft PU-based biomaterials for a variety of applications

    Attenuation of CD8+ T-Cell Function by CD4+CD25+ Regulatory T Cells in B-Cell Non-Hodgkin's Lymphoma

    Full text link
    distant view, from plaza near Parliament complex, 200

    Attenuation of CD8 +

    No full text

    Malignant B Cells Skew the Balance of Regulatory T Cells and T H

    No full text
    • …
    corecore