60 research outputs found

    The Magnitude and Mechanism of Charge Enhancement of CH∙∙O H-bonds

    Get PDF
    Quantum calculations find that neutral methylamines and thioethers form complexes, with N-methylacetamide (NMA) as proton acceptor, with binding energies of 2–5 kcal/mol. This interaction is magnified by a factor of 4–9, bringing the binding energy up to as much as 20 kcal/mol, when a CH3+ group is added to the proton donor. Complexes prefer trifurcated arrangements, wherein three separate methyl groups donate a proton to the O acceptor. Binding energies lessen when the systems are immersed in solvents of increasing polarity, but the ionic complexes retain their favored status even in water. The binding energy is reduced when the methyl groups are replaced by longer alkyl chains. The proton acceptor prefers to associate with those CH groups that are as close as possible to the S/N center of the formal positive charge. A single linear CH··O hydrogen bond (H-bond) is less favorable than is trifurcation with three separate methyl groups. A trifurcated arrangement with three H atoms of the same methyl group is even less favorable. Various means of analysis, including NBO, SAPT, NMR, and electron density shifts, all identify the +CH··O interaction as a true H-bond

    Silver(I) complex with 2-amino-4,4α-dihydro-4α,7-dimethyl-3<i>H</i>-phenoxazin-3-one (Phx-1) ligand: crystal structure, vibrational spectra and biological studies

    No full text
    <p>The first metal complex of Phx-1 ligand, bis(2-amino-4,4α-dihydro-4α,7-dimethyl-3<i>H</i>-phenoxazin-3-one)nitratosilver(I), [Ag(Phx-1)<sub>2</sub>NO<sub>3</sub>], has been obtained and investigated by single crystal X-ray diffraction and vibrational spectroscopy methods. The Ag<sup>+</sup> is bonded to heterocyclic nitrogen atoms of two organic ligands and one oxygen atom of a nitrate anion. The Phx-1 ligand coordination mode is supported by IR and Raman spectra, interpreted with the help of theoretical DFT studies. The antibacterial activity of the ligand and its Ag(I) complex as well as some reference compounds were screened against Gram-positive and Gram-negative bacteria, applying microdilution procedures. High sensitivity to the studied complex was found for <i>Rhodococcus erythropolis</i> and <i>Bacillus licheniformis</i> strains. Modified Phx-1 ligand preparation procedures are also presented.</p

    Fermi resonance in Ne, Ar and Kr-matrix infrared spectra of 5-bromouracil

    No full text
    Low-temperature matrix isolation Fourier-transform infrared spectroscopy and quantum-chemical calcula-tions with DFT/B3LYP and MP2 methods were used for investigation of isolated 5-bromouracil (BrU) mole-cules. Only one tautomeric form of BrU was dominated in the low-temperature Ne, Ar, and Kr matrices. It was revealed that population of minor hydroxy-tautomers did not exceed 0.2%. Appearance of additional absorption bands in the region of stretching vibrations CO (about 1710 cm⁻¹) as well as of deformation ones (1297, 1093, 901 cm⁻¹) was explained by Fermi resonance. In Ne matrices the peak intensities of absorption bands assigned to the out-of-plane vibrations of the ring and exocyclic atoms were decreased sharply. For the first time, least square method with the using of polynomial was proposed for the corrective scaling of calculated frequencies of vibrations. It is shown that the correction of calculated frequencies with the polynomial of degree two permits to decrease the root-mean-square discrepancy between the calculated and experimental ones to 4–5 cm⁻¹ in the re-gion of 1500–500 cm⁻¹. The same polynomial may be applied for the correction of spectra of molecules with a similar structure
    corecore