362 research outputs found

    On the Recognition of Families of Graphs with Local Computations

    Get PDF
    AbstractThis paper is a contribution to understanding the power and the limitations of local computations in graphs. We use local computations to define a notion of graph recognition; our model allows a simulation of automata on words and on trees. We introduce the notion of k-covering to examine limitations of such systems. For example, we prove that the family of series-parallel graphs and the family of planar graphs cannot be recognized by means of local computations

    Asynchronous Games over Tree Architectures

    Get PDF
    We consider the task of controlling in a distributed way a Zielonka asynchronous automaton. Every process of a controller has access to its causal past to determine the next set of actions it proposes to play. An action can be played only if every process controlling this action proposes to play it. We consider reachability objectives: every process should reach its set of final states. We show that this control problem is decidable for tree architectures, where every process can communicate with its parent, its children, and with the environment. The complexity of our algorithm is l-fold exponential with l being the height of the tree representing the architecture. We show that this is unavoidable by showing that even for three processes the problem is EXPTIME-complete, and that it is non-elementary in general

    An Exponential Lower Bound for the Latest Deterministic Strategy Iteration Algorithms

    Full text link
    This paper presents a new exponential lower bound for the two most popular deterministic variants of the strategy improvement algorithms for solving parity, mean payoff, discounted payoff and simple stochastic games. The first variant improves every node in each step maximizing the current valuation locally, whereas the second variant computes the globally optimal improvement in each step. We outline families of games on which both variants require exponentially many strategy iterations

    New Deterministic Algorithms for Solving Parity Games

    Full text link
    We study parity games in which one of the two players controls only a small number kk of nodes and the other player controls the n−kn-k other nodes of the game. Our main result is a fixed-parameter algorithm that solves bipartite parity games in time kO(k)⋅O(n3)k^{O(\sqrt{k})}\cdot O(n^3), and general parity games in time (p+k)O(k)⋅O(pnm)(p+k)^{O(\sqrt{k})} \cdot O(pnm), where pp is the number of distinct priorities and mm is the number of edges. For all games with k=o(n)k = o(n) this improves the previously fastest algorithm by Jurdzi{\'n}ski, Paterson, and Zwick (SICOMP 2008). We also obtain novel kernelization results and an improved deterministic algorithm for graphs with small average degree

    Symmetric Strategy Improvement

    Full text link
    Symmetry is inherent in the definition of most of the two-player zero-sum games, including parity, mean-payoff, and discounted-payoff games. It is therefore quite surprising that no symmetric analysis techniques for these games exist. We develop a novel symmetric strategy improvement algorithm where, in each iteration, the strategies of both players are improved simultaneously. We show that symmetric strategy improvement defies Friedmann's traps, which shook the belief in the potential of classic strategy improvement to be polynomial

    Structural abnormalities of the optic nerve and retina in Huntington’s disease pre-clinical and clinical settings

    Get PDF
    Huntington’s disease (HD) is a fatal neurodegenerative disorder caused by a polyglutamine expansion in the huntingtin protein. HD-related pathological remodelling has been reported in HD mouse models and HD carriers. In this study, we studied structural abnormalities in the optic nerve by employing Spectral Domain Optical Coherence Tomography (SD-OCT) in pre-symptomatic HD carriers of Caucasian origin. Transmission Electron Microscopy (TEM) was used to investigate ultrastructural changes in the optic nerve of the well-established R6/2 mouse model at the symptomatic stage of the disease. We found that pre-symptomatic HD carriers displayed a significant reduction in the retinal nerve fibre layer (RNFL) thickness, including specific quadrants: superior, inferior and temporal, but not nasal. There were no other significant irregularities in the GCC layer, at the macula level and in the optic disc morphology. The ultrastructural analysis of the optic nerve in R6/2 mice revealed a significant thinning of the myelin sheaths, with a lamellar separation of the myelin, and a presence of myelonoid bodies. We also found a significant reduction in the thickness of myelin sheaths in peripheral nerves within the choroids area. Those ultrastructural abnormalities were also observed in HD photoreceptor cells that contained severely damaged membrane disks, with evident vacuolisation and swelling. Moreover, the outer segment of retinal layers showed a progressive disintegration. Our study explored structural changes of the optic nerve in pre- and clinical settings and opens new avenues for the potential development of biomarkers that would be of great interest in HD gene therapies

    Local Strategy Improvement for Parity Game Solving

    Full text link
    The problem of solving a parity game is at the core of many problems in model checking, satisfiability checking and program synthesis. Some of the best algorithms for solving parity game are strategy improvement algorithms. These are global in nature since they require the entire parity game to be present at the beginning. This is a distinct disadvantage because in many applications one only needs to know which winning region a particular node belongs to, and a witnessing winning strategy may cover only a fractional part of the entire game graph. We present a local strategy improvement algorithm which explores the game graph on-the-fly whilst performing the improvement steps. We also compare it empirically with existing global strategy improvement algorithms and the currently only other local algorithm for solving parity games. It turns out that local strategy improvement can outperform these others by several orders of magnitude

    Blackwell-Optimal Strategies in Priority Mean-Payoff Games

    Full text link
    We examine perfect information stochastic mean-payoff games - a class of games containing as special sub-classes the usual mean-payoff games and parity games. We show that deterministic memoryless strategies that are optimal for discounted games with state-dependent discount factors close to 1 are optimal for priority mean-payoff games establishing a strong link between these two classes

    The Complexity of Nash Equilibria in Simple Stochastic Multiplayer Games

    Get PDF
    We analyse the computational complexity of finding Nash equilibria in simple stochastic multiplayer games. We show that restricting the search space to equilibria whose payoffs fall into a certain interval may lead to undecidability. In particular, we prove that the following problem is undecidable: Given a game G, does there exist a pure-strategy Nash equilibrium of G where player 0 wins with probability 1. Moreover, this problem remains undecidable if it is restricted to strategies with (unbounded) finite memory. However, if mixed strategies are allowed, decidability remains an open problem. One way to obtain a provably decidable variant of the problem is restricting the strategies to be positional or stationary. For the complexity of these two problems, we obtain a common lower bound of NP and upper bounds of NP and PSPACE respectively.Comment: 23 pages; revised versio

    Imitation in Large Games

    Full text link
    In games with a large number of players where players may have overlapping objectives, the analysis of stable outcomes typically depends on player types. A special case is when a large part of the player population consists of imitation types: that of players who imitate choice of other (optimizing) types. Game theorists typically study the evolution of such games in dynamical systems with imitation rules. In the setting of games of infinite duration on finite graphs with preference orderings on outcomes for player types, we explore the possibility of imitation as a viable strategy. In our setup, the optimising players play bounded memory strategies and the imitators play according to specifications given by automata. We present algorithmic results on the eventual survival of types
    • …
    corecore