410 research outputs found

    Biological Activity of Hydrophilic Extract of Chlorella vulgaris Grown on Post-Fermentation Leachate from a Biogas Plant Supplied with Stillage and Maize Silage

    Get PDF
    Algae are employed commonly in cosmetics, food and pharmaceuticals, as well as in feed production and biorefinery processes. In this study, post-fermentation leachate from a biogas plant which exploits stillage and maize silage was utilized as a culture medium forChlorella vulgaris. The content of polyphenols in hydrophilic extracts of the Chlorella vulgaris biomass was determined, and the extracts were evaluated for their antioxidant activity (DPPH assay), antibacterial activity (against Escherichia coli, Lactobacillus plantarum, Staphylococcus aureus, Staphylococcus epidermidis) and antifungal activity (against Aspergillus niger, Candida albicans, Saccharomyces cerevisiae). The use of the post-fermentation leachate was not found to affect the biological activity of the microalgae. The aqueous extract of Chlorella vulgaris biomass was also observed to exhibit activity against nematodes. The results of this study suggest that Chlorella vulgaris biomass cultured on post-fermentation leachate from a biogas plant can be successfully employed as a source of natural antioxidants, food supplements, feed, natural antibacterial and antifungal compounds, as well as in natural methods of plant protection

    Organization of technical rescue operations in the national rescue system

    Get PDF
    The organization of technical rescue is crucial to carry out an effective rescue operation. Often, this field of rescue is an inseparable element when conducting medical rescue operations, where it is necessary to use highly specialized equipment that is designed to provide access to the injured person and enable members of the Emergency Medical Teams to conduct medical rescue operations, as well as to provide them with qualified first aid by firefighters

    An in vivo neovascularization assay for screening regulators of angiogenesis and assessing their effects on pre-existing vessels

    Get PDF
    Therapeutic regulation of tissue vascularization has appeared as an attractive approach to treat a number of human diseases. In vivo neovascularization assays that reflect physiological and pathological formation of neovessels are important in this effort. In this report we present an assay where the effects of activators and inhibitors of angiogenesis can be quantitatively and qualitatively measured. A provisional matrix composed of collagen I and fibrin was formed in a plastic cylinder and implanted onto the chick chorioallantoic membrane. A nylon mesh separated the implanted matrix from the underlying tissue to distinguish new from pre-existing vessels. Vascularization of the matrix in response to fibroblast growth factor-2 or platelet-derived growth factor-BB was scored in a double-blinded manner, or vessel density was measured using a semi-automated image analysis procedure. Thalidomide, fumagillin, U0126 and TGFβ inhibited neovessel growth while hydrocortisone exerted a negative and wortmannin a toxic effect on the pre-existing vasculature. This quantitative, inexpensive and rapid in vivo angiogenesis assay might be a valuable tool in screening and characterizing factors that influence wound or tumor induced vascularization and in assessing their effects on the normal vasculatur

    Genesis and evolution of extended defects: The role of evolving interface instabilities in cubic SiC

    Get PDF
    Emerging wide bandgap semiconductor devices such as the ones built with SiC have the potential to revolutionize the power electronics industry through faster switching speeds, lower losses, and higher blocking voltages, which are superior to standard silicon-based devices. The current epitaxial technology enables more controllable and less defective large area substrate growth for the hexagonal polymorph of SiC (4H-SiC) with respect to the cubic counterpart (3C-SiC). However, the cubic polymorph exhibits superior physical properties in comparison to its hexagonal counterpart, such as a narrower bandgap (2.3 eV), possibility to be grown on a silicon substrate, a reduced density of states at the SiC/SiO2 interface, and a higher channel mobility, characteristics that are ideal for its incorporation in metal oxide semiconductor field effect transistors. The most critical issue that hinders the use of 3C-SiC for electronic devices is the high number of defects in bulk and epilayers, respectively. Their origin and evolution are not understood in the literature to date. In this manuscript, we combine ab initio calibrated Kinetic Monte Carlo calculations with transmission electron microscopy characterization to evaluate the evolution of extended defects in 3C-SiC. Our study pinpoints the atomistic mechanisms responsible for extended defect generation and evolution, and establishes that the antiphase boundary is the critical source of other extended defects such as single stacking faults with different symmetries and sequences. This paper showcases that the eventual reduction of these antiphase boundaries is particularly important to achieve good quality crystals, which can then be incorporated in electronic devices
    • …
    corecore