607 research outputs found

    Post-Deployment Treatment for Successful Reintegration

    Get PDF

    A cluster of highly polymorphic dinucleotide repeats in intron 17b of the cystic fibrosis transmembrane conductance regulator (CFTR) gene

    Get PDF
    A cluster of highly polymorphic dinucleotide repeats has been detected in intron 17b of the CFTR gene, 200 bp downstream from the preceding exon. At least 24 alleles, with sizes ranging from 7 to 56 units of a TA repeat, have been identified in a panel of 92 unrelated carriers of cystic fibrosis (CF). The common ones are those with 7, 30, and 31 dinucleotide units, with frequencies of .22, .19, and .12, respectively, among the non-CF chromosomes. Mendelian, codominant segregation of the alleles has been demonstrated in family studies, as expected. A less polymorphic dinucleotide (CA repeat) cluster has also been detected in a region 167 bp downstream from the TA repeat. The length of the CA repeat cluster varies from 11 to 17 dinucleotide units, and it appears to have an inverse relationship to that of the TA repeats. These dinucleotide repeats should be useful in genetic linkage studies, in counseling for CF families with unknown mutations, and in tracing the origins of the various mutant CF alleles.published_or_final_versio

    CFTR gene variant for patients with congenital absence of vas deferens [3]

    Get PDF
    published_or_final_versio

    Identification of a Novel Mutation of CFTR Gene in a Korean Patient with Cystic Fibrosis

    Get PDF
    Cystic fibrosis (CF) is the most common lethal autosomal recessive disease in Caucasians, but rare in Asians. The mutations of cystic fibrosis transmembrane conductance regulator (CFTR) gene are responsible for CF. To date, less than 5 cases of CF have been reported and a few of them diagnosed based on the genotype of the CFTR gene in Korea. We encountered a 4-month-old Korean infant with CF and the diagnosis was confirmed by CFTR gene mutation analysis. The patient underwent surgical operation, due to meconium ileus at birth. He suffered by recurrent respiratory infections, failure to thrive, fatty liver with hepatomegaly, and cholestasis. The mutations of the CFTR gene were identified in the patient and his parents. The patient was a compound heterozygote with a nonsense mutation of c.263T>G, resulting in an amino acid change of p.Leu88X in exon 3. It was previously described in a Korean patient with CF. The other is a novel mutation; c.2089-2090insA mutation (p.Arg697LysfsX33) in exon 13. The mutation c.263T>G was inherited from his father, and the c.2089-2090insA mutation from his mother. Respiratory infection was recovered by supportive care, and cholestasis was improved slowly with sufficient feeding and supplementation of pancreatic exocrine enzymes. He is 19-month old now and shows catch-up growth. We report a novel CFTR mutation in a Korean infant with CF

    Molecular consequences of cystic fibrosis transmembrane regulator (CFTR) gene mutations in the exocrine pancreas

    Get PDF
    Background and aims: We tested the hypothesis that the actual or predicted consequences of mutations in the cystic fibrosis transmembrane regulator gene correlate with the pancreatic phenotype and with measures of quantitative exocrine pancreatic function. Methods: We assessed 742 patients with cystic fibrosis for whom genotype and clinical data were available. At diagnosis, 610 were pancreatic insufficient, 110 were pancreatic sufficient, and 22 pancreatic sufficient patients progressed to pancreatic insufficiency after diagnosis. Results: We identified mutations on both alleles in 633 patients (85.3%), on one allele in 95 (12.8%), and on neither allele in 14 (1.9%). Seventy six different mutations were identified. The most common mutation was ΔF508 (71.3%) followed by G551D (2.9%), G542X (2.3%), 621+1G→T (1.2%), and W1282X (1.2%). Patients were categorized into five classes according to the predicted functional consequences of each mutation. Over 95% of patients with severe class I, II, and III mutations were pancreatic insufficient or progressed to pancreatic insufficiency. In contrast, patients with mild class IV and V mutations were consistently pancreatic sufficient. In all but four cases each genotype correlated exclusively with the pancreatic phenotype. Quantitative data of acinar and ductular secretion were available in 93 patients. Patients with mutations belonging to classes I, II, and III had greatly reduced acinar and ductular function compared with those with class IV or V mutations. Conclusion: The predicted or known functional consequences of specific mutant alleles correlate with the severity of pancreatic disease in cystic fibrosis.published_or_final_versio

    COX2 as a protective modifier of CF pulmonary disease severity

    Get PDF

    Spectrum of mutations in the CFTR gene of patients with classical and atypical forms of cystic fibrosis from southwestern Sweden: Identification of 12 novel mutations

    Get PDF
    Cystic fibrosis (CF) is caused by mutations in the CFTR gene. The spectrum of CFTR mutations varies between populations and depends on different factors, such as ethnic background and geographical location. The extensive CFTR mutation screening of 129 patients with classical or atypical CF from the south-western region of Sweden revealed the presence of 37 CFTR mutations, including 12 novel alleles. The overall mutation detection rate in this study population was 92%, the highest among all tested regions in Sweden. Eight mutations with a frequency above 1% (ΔF508, 394delTT, R117C, 3659delC, E60X, 1112delT, R764X, and 621 + 1G → T) accounted for 78% of CF chromosomes and have been recommended for inclusion in the CFTR mutation screening panel for molecular diagnosis of CF in this region. The multiple occurrence of specific CFTR alleles less common than the predominant ΔF508 mutation (394delTT, R117C, 3659delC) allowed for genotype-phenotype comparisons and revealed consistent relationships between these mutations and disease severity.published_or_final_versio

    A novel paradigm for attributing the diagnosis of CF disease

    Get PDF

    Large genomic rearrangements in the CFTR gene contribute to CBAVD

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>By performing extensive scanning of whole coding and flanking sequences of the <it>CFTR (Cystic Fibrosis Transmembrane Conductance Regulator</it>) gene, we had previously identified point mutations in 167 out of 182 (91.7%) males with isolated congenital bilateral absence of the vas deferens (CBAVD). Conventional PCR-based methods of mutation analysis do not detect gross DNA lesions. In this study, we looked for large rearrangements within the whole <it>CFTR </it>locus in the 32 CBAVD patients with only one or no mutation.</p> <p>Methods</p> <p>We developed a semi-quantitative fluorescent PCR assay (SQF-PCR), which relies on the comparison of the fluorescent profiles of multiplex PCR fragments obtained from different DNA samples. We confirmed the gross alterations by junction fragment amplification and identified their breakpoints by direct sequencing.</p> <p>Results</p> <p>We detected two large genomic heterozygous deletions, one encompassing exon 2 (c.54-5811_c.164+2186del8108ins182) [or <it>CFTRdele2</it>], the other removing exons 22 to 24 (c.3964-3890_c.4443+3143del9454ins5) [or <it>CFTRdele 22_24</it>], in two males carrying a typical CBAVD mutation on the other parental <it>CFTR </it>allele. We present the first bioinformatic tool for exon phasing of the <it>CFTR </it>gene, which can help to rename the exons and the nomenclature of small mutations according to international recommendations and to predict the consequence of large rearrangements on the open reading frame.</p> <p>Conclusion</p> <p>Identification of large rearrangements further expands the <it>CFTR </it>mutational spectrum in CBAVD and should now be systematically investigated. We have designed a simple test to specifically detect the presence or absence of the two rearrangements identified in this study.</p

    Heterogeneous Spectrum of CFTR Gene Mutations in Korean Patients with Cystic Fibrosis

    Get PDF
    BACKGROUND: Cystic fibrosis (CF) is one of the most common hereditary disorders among Caucasians. The most common mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene have been well established among Caucasian populations. In Koreans, however, there are very few cases of genetically confirmed CF thus far, and the spectrum of mutations seems quite different from that observed in Caucasians. METHODS: In the present study, we describe the cases of 2 Korean CF patients, present sequencing results identifying mutations in their CFTR gene, and summarize the results of CFTR mutational spectrum from previously reported Korean CF patients. The mutations described were identified by performing direct sequencing analysis of the complete coding regions and flanking intronic sequences of the CFTR gene, followed by multiplex ligation-dependent probe amplification (MLPA) analysis in order to detect gene deletions or duplications that could not be identified by a direct sequencing method. RESULTS: Three CFTR mutations were identified in the 2 patients, including p.Q98R, c.2052delA, and c.579+5G>A. In an analysis of 9 Korean CF patients that included the 2 patients presented in this study, p.Q98R mutation was the only recurrently observed mutation with a frequency of 18.8% (3/16 alleles). Furthermore, only one of the mutations (c.3272-26A>G) was found among the 32 common mutations in the screening panel for Caucasians from the Cystic Fibrosis Mutation Database. CONCLUSIONS: Sequencing of the entire CFTR gene followed by MLPA analysis, rather than using the targeted sequencing-based screening panel for mutations commonly found in Caucasian populations, is recommended for genetic analysis of Korean CF patientsope
    corecore