10,965 research outputs found
Internal kinematics of modelled interacting disc galaxies
We present an investigation of galaxy-galaxy interactions and their effects
on the velocity fields of disc galaxies in combined N-body/hydrodynamic
simulations, which include cooling, star formation with feedback, and galactic
winds. Rotation curves (RCs) of the gas are extracted from these simulations in
a way that follows the procedure applied to observations of distant, small, and
faint galaxies as closely as possible. We show that galaxy-galaxy mergers and
fly-bys disturb the velocity fields significantly and hence the RCs of the
interacting galaxies, leading to asymmetries and distortions in the RCs.
Typical features of disturbed kinematics are significantly rising or falling
profiles in the direction of the companion galaxy and pronounced bumps in the
RCs. In addition, tidal tails can leave strong imprints on the rotation curve.
All these features are observable for intermediate redshift galaxies, on which
we focus our investigations. We use a quantitative measure for the asymmetry of
rotation curves to show that the appearance of these distortions strongly
depends on the viewing angle. We also find in this way that the velocity fields
settle back into relatively undisturbed equilibrium states after unequal mass
mergers and fly-bys. About 1 Gyr after the first encounter, the RCs show no
severe distortions anymore. These results are consistent with previous
theoretical and observational studies. As an illustration of our results, we
compare our simulated velocity fields and direct images with rotation curves
from VLT/FORS spectroscopy and ACS images of a cluster at z=0.53 and find
remarkable similarities.Comment: 13 pages, 14 figures, accepted for publication in A&A, some
improvements and changes, main conclusions are unaffecte
Frequency splitting of intervalley phonons in graphene
We study the thermal distribution of intervalley phonons in a graphene sheet.
These phonons have two components with the same frequency. The degeneracy of
the two modes is preserved by weak electron-phonon coupling. A sufficiently
strong electron-phonon coupling, however, can result in a splitting into an
optical and an acoustic phonon branch, which creates a fluctuating gap in the
electronic spectrum. We describe these effects by treating the phonon
distribution within a saddle-point approximation. Fluctuations around the
saddle point indicate a Berezinskii-Kosterlitz-Thouless transition of the
acoustic branch. This transition might be observable in the polarization of
Raman scattered light.Comment: 5 pages, 1 figur
Density of states "width parity" effect in d-wave superconducting quantum wires
We calculate the density of states (DOS) in a clean mesoscopic d-wave
superconducting quantum wire, i.e. a sample of infinite length but finite width
. For open boundary conditions, the DOS at zero energy is found to be zero
if is even, and nonzero if is odd. At finite chemical potential, all
chains are gapped but the qualtitative differences between even and odd
remain.Comment: 7 pages, 8 figures, new figures and extended discussio
Functionalizing self-assembled GaN quantum dot superlattices by Eu-implantation
Self-assembled GaN quantum dots (QDs) stacked in superlattices (SL) with AlN spacer layers were implanted with Europium ions to fluences of 1013, 1014, and 1015 cm−2. The damage level introduced in the QDs by the implantation stays well below that of thick GaN epilayers. For the lowest fluence, the structural properties remain unchanged after implantation and annealing while for higher fluences the implantation damage causes an expansion of the SL in the [0001] direction which increases with implantation fluence and is only partly reversed after thermal annealing at 1000 °C. Nevertheless, in all cases, the SL quality remains very good after implantation and annealing with Eu ions incorporated preferentially into near-substitutional cation sites. Eu3+ optical activation is achieved after annealing in all samples. In the sample implanted with the lowest fluence, the Eu3+ emission arises mainly from Eu incorporated inside the QDs while for the higher fluences only the emission from Eu inside the AlN-buffer, capping, and spacer layers is observed.
© 2010 American Institute of PhysicsFCT-PTDC/CTM/100756/2008program PESSOA EGIDE/GRICESFCT-SFRH/BD/45774/2008FCT-SFRH/BD/44635/200
Generalized Integer Partitions, Tilings of Zonotopes and Lattices
In this paper, we study two kinds of combinatorial objects, generalized
integer partitions and tilings of two dimensional zonotopes, using dynamical
systems and order theory. We show that the sets of partitions ordered with a
simple dynamics, have the distributive lattice structure. Likewise, we show
that the set of tilings of zonotopes, ordered with a simple and classical
dynamics, is the disjoint union of distributive lattices which we describe. We
also discuss the special case of linear integer partitions, for which other
dynamical systems exist. These results give a better understanding of the
behaviour of tilings of zonotopes with flips and dynamical systems involving
partitions.Comment: See http://www.liafa.jussieu.fr/~latapy
Control theory for principled heap sizing
We propose a new, principled approach to adaptive heap sizing based on control theory. We review current state-of-the-art heap sizing mechanisms, as deployed in Jikes RVM and HotSpot. We then formulate heap sizing as a control problem, apply and tune a standard controller algorithm, and evaluate its performance on a set of well-known benchmarks. We find our controller adapts the heap size more responsively than existing mechanisms. This responsiveness allows tighter virtual machine memory footprints while preserving target application throughput, which is ideal for both embedded and utility computing domains. In short, we argue that formal, systematic approaches to memory management should be replacing ad-hoc heuristics as the discipline matures. Control-theoretic heap sizing is one such systematic approach
Influence of ion implantation on the magnetic and transport properties of manganite films
We have used oxygen ions irradiation to generate controlled structural
disorder in thin manganite films. Conductive atomic force microscopy CAFM),
transport and magnetic measurements were performed to analyze the influence of
the implantation process in the physical properties of the films. CAFM images
show regions with different conductivity values, probably due to the random
distribution of point defect or inhomogeneous changes of the local Mn3+/4+
ratio to reduce lattice strains of the irradiated areas. The transport and
magnetic properties of these systems are interpreted in this context.
Metal-insulator transition can be described in the frame of a percolative
model. Disorder increases the distance between conducting regions, lowering the
observed TMI. Point defect disorder increases localization of the carriers due
to increased disorder and locally enhanced strain field. Remarkably, even with
the inhomogeneous nature of the samples, no sign of low field magnetoresistance
was found. Point defect disorder decreases the system magnetization but doesn t
seem to change the magnetic transition temperature. As a consequence, an
important decoupling between the magnetic and the metal-insulator transition is
found for ion irradiated films as opposed to the classical double exchange
model scenario.Comment: 27 pages, 11 Figure
Optical Hall conductivity of systems with gapped spectral nodes
We calculate the optical Hall conductivity within the Kubo formalism for
systems with gapped spectral nodes, where the latter have a power-law
dispersion with exponent n. The optical conductivity is proportional to n and
there is a characteristic logarithmic singularity as the frequency approaches
the gap energy. The optical Hall conductivity is almost unaffected by thermal
fluctuations and disorder for n=1, whereas disorder has a stronger effect on
transport properties if n=2
Characterization of the Local Density of States Fluctuations near the Integer Quantum Hall Transition in a Quantum Dot Array
We present a calculation for the second moment of the local density of states
in a model of a two-dimensional quantum dot array near the quantum Hall
transition. The quantum dot array model is a realistic adaptation of the
lattice model for the quantum Hall transition in the two-dimensional electron
gas in an external magnetic field proposed by Ludwig, Fisher, Shankar and
Grinstein. We make use of a Dirac fermion representation for the Green
functions in the presence of fluctuations for the quantum dot energy levels. A
saddle-point approximation yields non-perturbative results for the first and
second moments of the local density of states, showing interesting fluctuation
behaviour near the quantum Hall transition. To our knowledge we discuss here
one of the first analytic characterizations of chaotic behaviour for a
two-dimensional mesoscopic structure. The connection with possible experimental
investigations of the local density of states in the quantum dot array
structures (by means of NMR Knight-shift or single-electron-tunneling
techniques) and our work is also established.Comment: 11 LaTeX pages, 1 postscript figure, to appear in Phys.Rev.
Orbital Optimized Density Functional Theory for Electronic Excited States
Density functional theory (DFT) based modeling of electronic excited states
is of importance for investigation of the photophysical/photochemical
properties and spectroscopic characterization of large systems. The widely used
linear response time-dependent DFT (TDDFT) approach is however not effective at
modeling many types of excited states, including (but not limited to)
charge-transfer states, doubly excited states and core-level excitations. In
this perspective, we discuss state-specific orbital optimized (OO) DFT
approaches as an alterative to TDDFT for electronic excited states. We motivate
the use of OO-DFT methods and discuss reasons behind their relatively
restricted historical usage (vs TDDFT). We subsequently highlight modern
developments that address these factors and allow efficient and reliable OO-DFT
computations. Several successful applications of OO-DFT for challenging
electronic excitations are also presented, indicating their practical efficacy.
OO-DFT approaches are thus increasingly becoming a useful route for computing
excited states of large chemical systems. We conclude by discussing the
limitations and challenges still facing OO-DFT methods, as well as some
potential avenues for addressing them
- …