63 research outputs found
BMI at Age 8 Years Is Influenced by the Type 2 Diabetes Susceptibility Genes HHEX-IDE and CDKAL1
OBJECTIVE: To determine whether HHEX-IDE and CDKAL1 genes, which are associated with birth weight and susceptibility to type 2 diabetes, continue to influence growth during childhood. RESEARCH DESIGN AND METHODS: BMI, weight, and height at age 8 years expressed as age- and sex-corrected standard deviation scores (SDS) against national reference data and single-nucleotide polymorphism genotyping of HHEX-IDE and CDKAL1 loci were analyzed in 646 prospectively followed children in the German BABYDIAB cohort. All children were singleton full-term births; 386 had mothers with type 1 diabetes, and 260 had fathers with type 1 diabetes and a nondiabetic mother. RESULTS: Type 2 diabetes risk alleles at the HHEX-IDE locus were associated with reduced BMI-SDS at age 8 years (0.17 SDS per allele; P = 0.004). After stratification for birth weight, both HHEX-IDE and CDKAL1 risk alleles were associated with reduced BMI-SDS (0.45 SDS, P = 0.0002; 0.52 SDS, P = 0.0001) and weight-SDS (0.22 SDS, P = 0.04; 0.56 SDS, P = 0.0002) in children born large for gestational age (>90th percentile) but not children born small or appropriate for gestational age. Within children born large for gestational age, BMI and weight decreased with each additional type 2 diabetes risk allele ( approximately -2 kg per allele; >8 kg overall). Findings were consistent in children of mothers with type 1 diabetes (P < 0.0001) and children of nondiabetic mothers (P = 0.008). CONCLUSIONS: The type 2 diabetes susceptibility alleles at HHEX-IDE and CDKAL1 loci are associated with low BMI at age 8 years in children who were born large for gestational age
Lack of Association of Type 2 Diabetes Susceptibility Genotypes and Body Weight on the Development of Islet Autoimmunity and Type 1 Diabetes
AIM: To investigate whether type 2 diabetes susceptibility genes and body weight influence the development of islet autoantibodies and the rate of progression to type 1 diabetes. METHODS: Genotyping for single nucleotide polymorphisms (SNP) of the type 2 diabetes susceptibility genes CDKAL1, CDKN2A/2B, FTO, HHEX-IDE, HMGA2, IGF2BP2, KCNJ11, KCNQ1, MTNR1B, PPARG, SLC30A8 and TCF7L2 was obtained in 1350 children from parents with type 1 diabetes participating in the BABYDIAB study. Children were prospectively followed from birth for islet autoantibodies and type 1 diabetes. Data on weight and height were obtained at 9 months, 2, 5, 8, 11, and 14 years of age. RESULTS: None of type 2 diabetes risk alleles at the CDKAL1, CDKN2A/2B, FTO, HHEX-IDE, HMGA2, IGF2BP2, KCNJ11, KCNQ1, MTNR1B, PPARG and SLC30A8 loci were associated with the development of islet autoantibodies or diabetes. The type 2 diabetes susceptible genotype of TCF7L2 was associated with a lower risk of islet autoantibodies (7% vs. 12% by age of 10 years, P = 0.015, P(corrected) = 0.18). Overweight children at seroconversion did not progress to diabetes faster than non-overweight children (HR: 1.08; 95% CI: 0.48-2.45, P>0.05). CONCLUSIONS: These findings do not support an association of type 2 diabetes risk factors with islet autoimmunity or acceleration of diabetes in children with a family history of type 1 diabetes
Oral insulin immunotherapy in children at risk for type 1 diabetes in a randomised controlled trial
AIMS/HYPOTHESIS Oral administration of antigen can induce immunological tolerance. Insulin is a key autoantigen in childhood type 1 diabetes. Here, oral insulin was given as antigen-specific immunotherapy before the onset of autoimmunity in children from age 6~months to assess its safety and immune response actions on immunity and the gut microbiome. METHODS A phase I/II randomised controlled trial was performed in a single clinical study centre in Germany. Participants were 44 islet autoantibody-negative children aged 6~months to 2.99~years who had a first-degree relative with type 1 diabetes and a susceptible HLA DR4-DQ8-containing genotype. Children were randomised 1:1 to daily oral insulin (7.5~mg with dose escalation to 67.5~mg) or placebo for 12~months using a web-based computer system. The primary outcome was immune efficacy pre-specified as induction of antibody or T cell responses to insulin and measured in a central treatment-blinded laboratory. RESULTS Randomisation was performed in 44 children. One child in the placebo group was withdrawn after the first study visit and data from 22 insulin-treated and 21 placebo-treated children were analysed. Oral insulin was well tolerated with no changes in metabolic variables. Immune responses to insulin were observed in children who received both insulin (54.5%) and placebo (66.7%), and the trial did not demonstrate an effect on its primary outcome (p = 0.54). In exploratory analyses, there was preliminary evidence that the immune response and gut microbiome were modified by the INS genotype Among children with the type 1 diabetes-susceptible INS genotype (n = 22), antibody responses to insulin were more frequent in insulin-treated (72.7%) as compared with placebo-treated children (18.2%; p = 0.03). T cell responses to insulin were modified by treatment-independent inflammatory episodes. CONCLUSIONS/INTERPRETATION The study demonstrated that oral insulin immunotherapy in young genetically at-risk children was safe, but was not associated with an immune response as predefined in the trial primary outcome. Exploratory analyses suggested that antibody responses to oral insulin may occur in children with a susceptible INS genotype, and that inflammatory episodes may promote the activation of insulin-responsive T cells. TRIAL REGISTRATION Clinicaltrials.gov NCT02547519 FUNDING: The main funding source was the German Center for Diabetes Research (DZD e.V.)
Screening for Type 1 Diabetes in the General Population:A Status Report and Perspective
Most screening programs to identify individuals at risk for type 1 diabetes have targeted relatives of people living with the disease to improve yield and feasibility. However, ∼90% of those who develop type 1 diabetes do not have a family history. Recent successes in disease-modifying therapies to impact the course of early-stage disease have ignited the consideration of the need for and feasibility of population screening to identify those at increased risk. Existing population screening programs rely on genetic or autoantibody screening, and these have yielded significant information about disease progression and approaches for timing for screening in clinical practice. At the March 2021 Type 1 Diabetes TrialNet Steering Committee meeting, a session was held in which ongoing efforts for screening in the general population were discussed. This report reviews the background of these efforts and the details of those programs. Additionally, we present hurdles that need to be addressed for successful implementation of population screening and provide initial recommendations for individuals with positive screens so that standardized guidelines for monitoring and follow-up can be established
HbA1c as a time predictive biomarker for an additional islet autoantibody and type 1 diabetes in seroconverted TEDDY children
Objective Increased level of glycated hemoglobin (HbA1c) is associated with type 1 diabetes onset that in turn is preceded by one to several autoantibodies against the pancreatic islet beta cell autoantigens; insulin (IA), glutamic acid decarboxylase (GAD), islet antigen-2 (IA-2) and zinc transporter 8 (ZnT8). The risk for type 1 diabetes diagnosis increases by autoantibody number. Biomarkers predicting the development of a second or a subsequent autoantibody and type 1 diabetes are needed to predict disease stages and improve secondary prevention trials. This study aimed to investigate whether HbA1c possibly predicts the progression from first to a subsequent autoantibody or type 1 diabetes in healthy children participating in the Environmental Determinants of Diabetes in the Young (TEDDY) study. Research Design and Methods A joint model was designed to assess the association of longitudinal HbA1c levels with the development of first (insulin or GAD autoantibodies) to a second, second to third, third to fourth autoantibody or type 1 diabetes in healthy children prospectively followed from birth until 15 years of age. Results It was found that increased levels of HbA1c were associated with a higher risk of type 1 diabetes (HR 1.82, 95% CI [1.57-2.10], p Conclusion In conclusion, increased HbA1c is a reliable time predictive marker for type 1 diabetes onset. The increased rate of increase of HbA1c from first to third autoantibody and the decrease in HbA1c predicting the development of IA-2A are novel findings proving the link between HbA1c and the appearance of autoantibodies.</p
Recommended from our members
An Anti-CD3 Antibody, Teplizumab, in Relatives at Risk for Type 1 Diabetes.
BackgroundType 1 diabetes is a chronic autoimmune disease that leads to destruction of insulin-producing beta cells and dependence on exogenous insulin for survival. Some interventions have delayed the loss of insulin production in patients with type 1 diabetes, but interventions that might affect clinical progression before diagnosis are needed.MethodsWe conducted a phase 2, randomized, placebo-controlled, double-blind trial of teplizumab (an Fc receptor-nonbinding anti-CD3 monoclonal antibody) involving relatives of patients with type 1 diabetes who did not have diabetes but were at high risk for development of clinical disease. Patients were randomly assigned to a single 14-day course of teplizumab or placebo, and follow-up for progression to clinical type 1 diabetes was performed with the use of oral glucose-tolerance tests at 6-month intervals.ResultsA total of 76 participants (55 [72%] of whom were ≤18 years of age) underwent randomization - 44 to the teplizumab group and 32 to the placebo group. The median time to the diagnosis of type 1 diabetes was 48.4 months in the teplizumab group and 24.4 months in the placebo group; the disease was diagnosed in 19 (43%) of the participants who received teplizumab and in 23 (72%) of those who received placebo. The hazard ratio for the diagnosis of type 1 diabetes (teplizumab vs. placebo) was 0.41 (95% confidence interval, 0.22 to 0.78; P = 0.006 by adjusted Cox proportional-hazards model). The annualized rates of diagnosis of diabetes were 14.9% per year in the teplizumab group and 35.9% per year in the placebo group. There were expected adverse events of rash and transient lymphopenia. KLRG1+TIGIT+CD8+ T cells were more common in the teplizumab group than in the placebo group. Among the participants who were HLA-DR3-negative, HLA-DR4-positive, or anti-zinc transporter 8 antibody-negative, fewer participants in the teplizumab group than in the placebo group had diabetes diagnosed.ConclusionsTeplizumab delayed progression to clinical type 1 diabetes in high-risk participants. (Funded by the National Institutes of Health and others; ClinicalTrials.gov number, NCT01030861.)
Islet Autoimmunity and HLA Markers of Presymptomatic and Clinical Type 1 Diabetes: Joint Analyses of Prospective Cohort Studies in Finland, Germany, Sweden, and the US
OBJECTIVETo combine prospective cohort studies, by including HLA harmonization, and estimate risk of islet autoimmunity and progression to clinical diabetes.RESEARCH DESIGN AND METHODSFor prospective cohorts in Finland, Germany, Sweden, and the U.S., 24,662 children at increased genetic risk for development of islet autoantibodies and type 1 diabetes have been followed. Following harmonization, the outcomes were analyzed in 16,709 infants-toddlers enrolled by age 2.5 years.RESULTSIn the infant-toddler cohort, 1,413 (8.5%) developed at least one autoantibody confirmed at two or more consecutive visits (seroconversion), 865 (5%) developed multiple autoantibodies, and 655 (4%) progressed to diabetes. The 15-year cumulative incidence of diabetes varied in children with one, two, or three autoantibodies at seroconversion: 45% (95% CI 40–52), 85% (78–90), and 92% (85–97), respectively. Among those with a single autoantibody, status 2 years after seroconversion predicted diabetes risk: 12% (10–25) if reverting to autoantibody negative, 30% (20–40) if retaining a single autoantibody, and 82% (80–95) if developing multiple autoantibodies. HLA-DR-DQ affected the risk of confirmed seroconversion and progression to diabetes in children with stable single-autoantibody status. Their 15-year diabetes incidence for higher- versus lower-risk genotypes was 40% (28–50) vs. 12% (5–38). The rate of progression to diabetes was inversely related to age at development of multiple autoantibodies, ranging from 20% per year to 6% per year in children developing multipositivity in ≤2 years or >7.4 years, respectively.CONCLUSIONSThe number of islet autoantibodies at seroconversion reliably predicts 15-year type 1 diabetes risk. In children retaining a single autoantibody, HLA-DR-DQ genotypes can further refine risk of progression.</div
Telomere length is not a main factor for the development of islet autoimmunity and type 1 diabetes in the TEDDY study.
Funder: Lund UniversityThe Environmental Determinants of Diabetes in the Young (TEDDY) study enrolled 8676 children, 3-4 months of age, born with HLA-susceptibility genotypes for islet autoimmunity (IA) and type 1 diabetes (T1D). Whole-genome sequencing (WGS) was performed in 1119 children in a nested case-control study design. Telomere length was estimated from WGS data using five tools: Computel, Telseq, Telomerecat, qMotif and Motif_counter. The estimated median telomere length was 5.10 kb (IQR 4.52-5.68 kb) using Computel. The age when the blood sample was drawn had a significant negative correlation with telomere length (P = 0.003). European children, particularly those from Finland (P = 0.041) and from Sweden (P = 0.001), had shorter telomeres than children from the U.S.A. Paternal age (P = 0.019) was positively associated with telomere length. First-degree relative status, presence of gestational diabetes in the mother, and maternal age did not have a significant impact on estimated telomere length. HLA-DR4/4 or HLA-DR4/X children had significantly longer telomeres compared to children with HLA-DR3/3 or HLA-DR3/9 haplogenotypes (P = 0.008). Estimated telomere length was not significantly different with respect to any IA (P = 0.377), IAA-first (P = 0.248), GADA-first (P = 0.248) or T1D (P = 0.861). These results suggest that telomere length has no major impact on the risk for IA, the first step to develop T1D. Nevertheless, telomere length was shorter in the T1D high prevalence populations, Finland and Sweden
- …