140 research outputs found

    Hydrogen-induced ferromagnetism in ZnO single crystals investigated by Magnetotransport

    Full text link
    We investigated the electrical and magnetic properties of low-energy hydrogen-implanted ZnO single crystals with hydrogen concentrations up to 3 at.% in the first 20 nm surface layer between 10 K and 300 K. All samples showed clear ferromagnetic hysteresis loops at 300 K with a saturation magnetization up to 4 emu/g. The measured anomalous Hall effect agrees with the hysteresis loops measured by superconducting quantum interferometer device magnetometry. All the H-treated ZnO crystals exhibited a negative magnetoresistance up to the room temperature. The relative magnitude of the anisotropic magnetoresistance reaches 0.4 % at 250 K and 2 % at 10 K, exhibiting an anomalous, non-monotonous behavior and a change of sign below 100 K. All the experimental data indicate that hydrogen atoms alone in a few percent range trigger a magnetic order in a ZnO crystalline state. Hydrogen implantation turns out to be a simpler and effective method to generate a magnetic order in ZnO, which provides interesting possibilities for future applications due to the strong reduction of the electrical resistance

    Probing IMF using nanodust measurements from inside Saturn's magnetosphere

    Full text link
    We present a new concept of monitoring the interplanetary magnetic field (IMF) by using in situ measurements of nanodust stream particles in Saturn's magnetosphere. We show that the nanodust detection pattern obtained inside the magnetosphere resembles those observed in interplanetary space and is associated with the solar wind compression regions. Our dust dynamics model reproduces the observed nanodust dynamical properties as well as the detection pattern, suggesting that the ejected stream particles can reenter Saturn's magnetosphere at certain occasions due to the dynamical influence from the time‐varying IMF. This method provides information on the IMF direction and a rough estimation on the solar wind compression arrival time at Saturn. Such information can be useful for studies related to the solar wind‐magnetosphere interactions, especially when the solar wind parameters are not directly available. Key Points A new method to probe IMF with nanodust measurements inside the magnetosphere Under changing IMF, ejected nanoparticles can re‐enter Saturn‐s magnetosphere IMF direction and solar wind compression arrival time can be derivedPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/99078/1/grl50604.pd

    Real and Virtual Compton Scattering: the nucleon polarisabilities

    Full text link
    We give an overview of low-energy Compton scattering (gamma^(*) p --> gamma p) with a real or virtual incoming photon. These processes allow the investigation of one of the fundamental properties of the nucleon, i.e. how its internal structure deforms under an applied static electromagnetic field. Our knowledge of nucleon polarisabilities and their generalization to non-zero four-momentum transfer will be reviewed, including the presently ongoing experiments and future perspectives.Comment: 20 pages, 12 figures. Minireview/Proceedings of "Many-Body Structure of Strongly Interacting Systems", Mainz, Germany, Feb. 23-25 2011 . V2: typos corrected. version to appear in EPJ Special Topic

    Measurement of the Electric and Magnetic Polarizabilities of the Proton

    Full text link
    The Compton scattering cross section on the proton has been measured at laboratory angles of 90∘^\circ and 135∘^\circ using tagged photons in the energy range 70--100 MeV and simultaneously using untagged photons in the range 100--148~MeV. With the aid of dispersion relations, these cross sections were used to extract the electric and magnetic polarizabilities, αˉ\bar{\alpha} and ÎČˉ\bar{\beta} respectively, of the proton. We find αˉ+ÎČˉ=(15.0±2.9±1.1±0.4)×10−4 fm3,\bar{\alpha}+\bar{\beta} = ( 15.0 \pm 2.9 \pm 1.1 \pm 0.4 ) \times 10^{-4} \: {\rm fm}^3, in agreement with a model-independent dispersion sum rule, and αˉ−ÎČˉ=(10.8±1.1±1.4±1.0)×10−4 fm3,\bar{\alpha}-\bar{\beta} = ( 10.8 \pm 1.1 \pm 1.4 \pm 1.0 ) \times 10^{-4} \: {\rm fm}^3, where the errors shown are statistical, systematic, and model-dependent, respectively. A comparison with previous experiments is given and global values for the polarizabilities are extracted.Comment: 35 pages, 11 PostScript figures, uses RevTex 3.

    Fixed-t subtracted dispersion relations for Compton scattering off the nucleon

    Get PDF
    We present fixed-tt subtracted dispersion relations for Compton scattering off the nucleon at energies Eγ≀E_\gamma \leq 500 MeV, as a formalism to extract the nucleon polarizabilities with a minimum of model dependence. The subtracted dispersion integrals are mainly saturated by πN\pi N intermediate states in the ss-channel ÎłN→πN→γN\gamma N \to \pi N \to \gamma N and ππ\pi \pi intermediate states in the tt-channel ÎłÎłâ†’Ï€Ï€â†’NNˉ\gamma \gamma \to \pi \pi \to N \bar N. For the subprocess ÎłÎłâ†’Ï€Ï€\gamma \gamma \to \pi \pi, we construct a unitarized amplitude and find a good description of the available data. We show results for Compton scattering using the subtracted dispersion relations and display the sensitivity on the scalar polarizability difference α−ÎČ\alpha - \beta and the backward spin polarizability ÎłÏ€\gamma_\pi, which enter directly as fit parameters in the present formalism

    Meson exchange and nucleon polarizabilities in the quark model

    Full text link
    Modifications to the nucleon electric polarizability induced by pion and sigma exchange in the q-q potentials are studied by means of sum rule techniques within a non-relativistic quark model. Contributions from meson exchange interactions are found to be small and in general reduce the quark core polarizability for a number of hybrid and one-boson-exchange q-q models. These results can be explained by the constraints that the baryonic spectrum impose on the short range behavior of the mesonic interactions.Comment: 11 pages, 1 figure added, expanded discussio

    Predictive powers of chiral perturbation theory in Compton scattering off protons

    Full text link
    We study low-energy nucleon Compton scattering in the framework of baryon chiral perturbation theory (Bχ\chiPT) with pion, nucleon, and Δ\Delta(1232) degrees of freedom, up to and including the next-to-next-to-leading order (NNLO). We include the effects of order p2p^2, p3p^3 and p4/Δp^4/\varDelta, with Δ≈300\varDelta\approx 300 MeV the Δ\Delta-resonance excitation energy. These are all "predictive" powers in the sense that no unknown low-energy constants enter until at least one order higher (i.e, p4p^4). Estimating the theoretical uncertainty on the basis of natural size for p4p^4 effects, we find that uncertainty of such a NNLO result is comparable to the uncertainty of the present experimental data for low-energy Compton scattering. We find an excellent agreement with the experimental cross section data up to at least the pion-production threshold. Nevertheless, for the proton's magnetic polarizability we obtain a value of (4.0±0.7)×10−4(4.0\pm 0.7)\times 10^{-4} fm3^3, in significant disagreement with the current PDG value. Unlike the previous χ\chiPT studies of Compton scattering, we perform the calculations in a manifestly Lorentz-covariant fashion, refraining from the heavy-baryon (HB) expansion. The difference between the lowest order HBχ\chiPT and Bχ\chiPT results for polarizabilities is found to be appreciable. We discuss the chiral behavior of proton polarizabilities in both HBχ\chiPT and Bχ\chiPT with the hope to confront it with lattice QCD calculations in a near future. In studying some of the polarized observables, we identify the regime where their naive low-energy expansion begins to break down, thus addressing the forthcoming precision measurements at the HIGS facility.Comment: 24 pages, 9 figures, RevTeX4, revised version published in EPJ

    Low-Energy Compton Scattering of Polarized Photons on Polarized Nucleons

    Get PDF
    The general structure of the cross section of ÎłN\gamma N scattering with polarized photon and/or nucleon in initial and/or final state is systematically described and exposed through invariant amplitudes. A low-energy expansion of the cross section up to and including terms of order ω4\omega^4 is given which involves ten structure parameters of the nucleon (dipole, quadrupole, dispersion, and spin polarizabilities). Their physical meaning is discussed in detail. Using fixed-t dispersion relations, predictions for these parameters are obtained and compared with results of chiral perturbation theory. It is emphasized that Compton scattering experiments at large angles can fix the most uncertain of these structure parameters. Predictions for the cross section and double-polarization asymmetries are given and the convergence of the expansion is investigated. The feasibility of the experimental determination of some of the struture parameters is discussed.Comment: 41 pages of text, 9 figures; minor revisions prior to publication in Phys. Rev.

    Age as a Risk Factor for Severe Manifestations and Fatal Outcome of Falciparum Malaria in European Patients: Observations from TropNetEurop and SIMPID Surveillance Data

    Get PDF
    Previous studies have indicated that age is a risk factor for severe falciparum malaria in nonimmune patients. The objectives of this study were to reevaluate previous findings with a larger sample and to find out how strongly clinical outcomes for elderly patients differ from those for younger patients. Results of adjusted analyses indicated that the risks of death due to falciparum malaria, of experiencing cerebral or severe disease in general, and of hospitalization increased significantly with each decade of life. The case-fatality rate was almost 6 times greater among elderly patients than among younger patients, and cerebral complications occurred 3 times more often among elderly patients. Antimalarial chemoprophylaxis was significantly associated with a lower case-fatality rate and a lower frequency of cerebral complications. Women were more susceptible to cerebral complications than were men. Our study provides evidence that falciparum malaria is more serious in older patients and demonstrates that clinical surveillance networks are capable of providing quality data for investigation of rare events or disease
    • 

    corecore