15 research outputs found

    Ab initio study of interaction of helium with edge and screw dislocations in tungsten

    No full text
    The interaction of a single He atom with edge and screw dislocations in tungsten has been studied using ab initio calculations. It was revealed that He is strongly attracted to the core of both dislocations with the interaction energy of -1.3 and -3.0 eV for screw and edge dislocations, respectively, which corresponds to the detrapping temperature in thermal desorption spectroscopy experiments of about 500 K and 1050 K, respectively. The lowest energy positions for He around the dislocation cores are identified and the atomic structures are rationalized on the basis of elasticity theory considerations. Both types of dislocations exhibit a higher binding energy for He as compared to the He-He binding (known as self-trapping) and are weaker traps as compared to a single vacancy. It is, thus, concluded that the strong attraction to dislocation lines can contribute to the nucleation of He clusters in the temperature range which already excludes He self-trapping. (C) 2016 Elsevier B.V. All rights reserved

    Interaction of hydrogen and helium with nanometric dislocation loops in tungsten assessed by atomistic calculations

    No full text
    The interaction of H and He interstitial atoms with 1/2 and loops in tungsten (W) was studied by means of Molecular Static and Molecular Dynamics simulations. A recently developed interatomic potential was benchmarked using data for dislocation loops obtained earlier with two other W potentials available in literature. Molecular Static calculations demonstrated that 1/2 loops feature a wide spectrum of the binding energy with a maximum value of 1.1 eV for H and 1.93 eV for He as compared to 0.89 eV and 1.56 eV for a straight 1/2 {1 1 0} edge dislocation. For loops, the values of the binding energy were found to be 1.63 eV and 2.87 eV for H and He, respectively. These results help to better understand the role played by dislocation loops in H/He retention in tungsten. Based on the obtained results, a contribution of the considered dislocation loops to the trapping and retention under plasma exposure is discussed. (C) 2016 Elsevier B.V. All rights reserved

    Molecular dynamics simulation of hydrogen and helium trapping in tungsten

    Get PDF
    Tungsten has been chosen as the divertor armour material in ITER and is the main candidate material for plasma-facing components for future fusion reactors. Interaction of plasma components with the material leads to degradation of the performance and thus the lifetime of the in-vessel components. On top of that special attention is drawn to tritium retention in the reactors vessel from a safety point of view, since tritium is radioactive material. In order to gain better understanding of the mechanisms driving accumulation of plasma components in the material and subsequent degradation of the material, atomistic simulations are employed. The focus of this work is on so-called self trapping of H and He atoms or, in other words, Frenkel pair formation in bulk tungsten in the presence of H and He atoms. Two versions of a model embedded atom interatomic potential and a bond order potential were tested by comparing it with ab initio data regarding the binding properties of pure He and He-H-Vacancy clusters and energetics of Frenkel pair formation. As a result of Molecular Dynamics simulations at finite temperature, the values of critical H concentration needed for the generation of a Frenkel pair in the presence of He clusters were obtained. The results show that the critical H concentration decreases with the size of He cluster present in the simulation cell and thus, Frenkel pair formation by H is facilitated in the presence of He clusters in the material

    Modelling deuterium release from tungsten after high flux high temperature deuterium plasma exposure

    No full text
    Tungsten is a primary candidate for plasma facing materials for future fusion devices. An important safety concern in the design of plasma facing components is the retention of hydrogen isotopes. Available experimental data is vast and scattered, and a consistent physical model of retention of hydrogen isotopes in tungsten is still missing. In this work we propose a model of non-equilibrium hydrogen isotopes trapping under fusion relevant plasma exposure conditions. The model is coupled to a diffusion-trapping simulation tool and is used to interpret recent experiments involving high plasma flux exposures. From the computational analysis performed, it is concluded that high flux high temperature exposures (T = 1000 K, flux = 10(24) D/m(2)/s and fluence of 10(26) D/m(2)) result in generation of sub-surface damage and bulk diffusion, so that the retention is driven by both sub-surface plasma-induced defects (bubbles) and trapping at natural defects. On the basis of the non-equilibrium trapping model we have estimated the amount of H stored in the sub-surface region to be similar to 10 (5) at (1), while the bulk retention is about 4 x 10 (7) at (1), calculated by assuming the sub-surface layer thickness of about 10 mu m and adjusting the trap concentration to comply with the experimental results for the integral retention. (C) 2016 Elsevier B.V. All rights reserved
    corecore