71 research outputs found

    γ-Catenin is overexpressed in acute myeloid leukemia and promotes the stabilization and nuclear localization of β-catenin

    Get PDF
    Canonical Wnt signaling regulates the transcription of T-cell factor (TCF)-responsive genes through the stabilization and nuclear translocation of the transcriptional co-activator, β-catenin. Overexpression of β-catenin features prominently in acute myeloid leukemia (AML) and has previously been associated with poor clinical outcome. Overexpression of γ-catenin mRNA (a close homologue of β-catenin) has also been reported in AML and has been linked to the pathogenesis of this disease, however, the relative roles of these catenins in leukemia remains unclear. Here we report that overexpression and aberrant nuclear localization of γ-catenin is frequent in AML. Significantly, γ-catenin expression was associated with β-catenin stabilization and nuclear localization. Consistent with this, we found that ectopic γ-catenin expression promoted the stabilization and nuclear translocation of β-catenin in leukemia cells. β-Catenin knockdown demonstrated that both γ- and β-catenin contribute to TCF-dependent transcription in leukemia cells. These data indicate that γ-catenin expression is a significant factor in the stabilization of β-catenin in AML. We also show that although normal cells exclude nuclear translocation of both γ- and β-catenin, this level of regulation is lost in the majority of AML patients and cell lines, which allow nuclear accumulation of these catenins and inappropriate TCF-dependent transcription

    Cell-Cell Contact Preserves Cell Viability via Plakoglobin

    Get PDF
    Control over cell viability is a fundamental property underlying numerous physiological processes. Cell spreading on a substrate was previously demonstrated to be a major factor in determining the viability of individual cells. In multicellular organisms, cell-cell contact is likely to play a significant role in regulating cell vitality, but its function is easily masked by cell-substrate interactions, thus remains incompletely characterized. In this study, we show that suspended immortalized human keratinocyte sheets with persisting intercellular contacts exhibited significant contraction, junctional actin localization, and reinforcement of cell-cell adhesion strength. Further, cells within these sheets remain viable, in contrast to trypsinized cells suspended without either cell-cell or cell-substrate contact, which underwent apoptosis at high rates. Suppression of plakoglobin weakened cell-cell adhesion in cell sheets and suppressed apoptosis in suspended, trypsinized cells. These results demonstrate that cell-cell contact may be a fundamental control mechanism governing cell viability and that the junctional protein plakoglobin is a key regulator of this process. Given the near-ubiquity of plakoglobin in multicellular organisms, these findings could have significant implications for understanding cell adhesion, modeling disease progression, developing therapeutics and improving the viability of tissue engineering protocols

    Cell-Cycle Dependence of Transcription Dominates Noise in Gene Expression

    Get PDF
    The large variability in mRNA and protein levels found from both static and dynamic measurements in single cells has been largely attributed to random periods of transcription, often occurring in bursts. The cell cycle has a pronounced global role in affecting transcriptional and translational output, but how this influences transcriptional statistics from noisy promoters is unknown and generally ignored by current stochastic models. Here we show that variable transcription from the synthetic tetO promoter in S. cerevisiae is dominated by its dependence on the cell cycle. Real-time measurements of fluorescent protein at high expression levels indicate tetO promoters increase transcription rate ~2-fold in S/G2/M similar to constitutive genes. At low expression levels, where tetO promoters are thought to generate infrequent bursts of transcription, we observe random pulses of expression restricted to S/G2/M, which are correlated between homologous promoters present in the same cell. The analysis of static, single-cell mRNA measurements at different points along the cell cycle corroborates these findings. Our results demonstrate that highly variable mRNA distributions in yeast are not solely the result of randomly switching between periods of active and inactive gene expression, but instead largely driven by differences in transcriptional activity between G1 and S/G2/M.GM095733BBBE 103316MIT Startup Fun

    Gamma-Secretase-Dependent and -Independent Effects of Presenilin1 on β-Catenin·Tcf-4 Transcriptional Activity

    Get PDF
    Presenilin1 (PS1) is a component of the γ-secretase complex mutated in cases of Familial Alzheimer's disease (FAD). PS1 is synthesized as a 50 kDa peptide subsequently processed to two 29 and 20 kDa subunits that remain associated. Processing of PS1 is inhibited by several mutations detected in FAD patients. PS1 acts as negative modulator of β-catenin·Tcf-4 transcriptional activity. In this article we show that in murine embryonic fibroblasts (MEFs) the mechanisms of action of the processed and non-processed forms of PS1 on β-catenin·Tcf-4 transcription are different. Whereas non-processed PS1 inhibits β-catenin·Tcf-4 activity through a mechanism independent of γ-secretase and associated with the interaction of this protein with plakoglobin and Tcf-4, the effect of processed PS1 is prevented by γ-secretase inhibitors, and requires its interaction with E- or N-cadherin and the generation of cytosolic terminal fragments of these two cadherins, which in turn destabilize the β-catenin transcriptional cofactor CBP. Accordingly, the two forms of PS1 interact differently with E-cadherin or β-catenin and plakoglobin: whereas processed PS1 binds E-cadherin with high affinity and β-catenin or plakoglobin weakly, the non-processed form behaves inversely. Moreover, contrarily to processed PS1, that decreases the levels of c-fos RNA, non-processed PS1 inhibits the expression c-myc, a known target of β-catenin·Tcf-4, and does not block the activity of other transcriptional factors requiring CBP. These results indicate that prevention of PS1 processing in FAD affects the mechanism of repression of the transcriptional activity dependent on β-catenin

    Organization of multiprotein complexes at cell–cell junctions

    Get PDF
    The formation of stable cell–cell contacts is required for the generation of barrier-forming sheets of epithelial and endothelial cells. During various physiological processes like tissue development, wound healing or tumorigenesis, cellular junctions are reorganized to allow the release or the incorporation of individual cells. Cell–cell contact formation is regulated by multiprotein complexes which are localized at specific structures along the lateral cell junctions like the tight junctions and adherens junctions and which are targeted to these site through their association with cell adhesion molecules. Recent evidence indicates that several major protein complexes exist which have distinct functions during junction formation. However, this evidence also indicates that their composition is dynamic and subject to changes depending on the state of junction maturation. Thus, cell–cell contact formation and integrity is regulated by a complex network of protein complexes. Imbalancing this network by oncogenic proteins or pathogens results in barrier breakdown and eventually in cancer. Here, I will review the molecular organization of the major multiprotein complexes at junctions of epithelial cells and discuss their function in cell–cell contact formation and maintenance

    Neuronal development is promoted by weakened intrinsic antioxidant defences due to epigenetic repression of Nrf2

    Get PDF
    Forebrain neurons have weak intrinsic antioxidant defences compared with astrocytes, but the molecular basis and purpose of this is poorly understood. We show that early in mouse cortical neuronal development in vitro and in vivo, expression of the master-regulator of antioxidant genes, transcription factor NF-E2-related-factor-2 (Nrf2), is repressed by epigenetic inactivation of its promoter. Consequently, in contrast to astrocytes or young neurons, maturing neurons possess negligible Nrf2-dependent antioxidant defences, and exhibit no transcriptional responses to Nrf2 activators, or to ablation of Nrf2’s inhibitor Keap1. Neuronal Nrf2 inactivation seems to be required for proper development: in maturing neurons, ectopic Nrf2 expression inhibits neurite outgrowth and aborization, and electrophysiological maturation, including synaptogenesis. These defects arise because Nrf2 activity buffers neuronal redox status, inhibiting maturation processes dependent on redox-sensitive JNK and Wnt pathways. Thus, developmental epigenetic Nrf2 repression weakens neuronal antioxidant defences but is necessary to create an environment that supports neuronal development
    corecore