9 research outputs found

    Lumbar posterior group muscle degeneration: Influencing factors of adjacent vertebral body re-fracture after percutaneous vertebroplasty

    Get PDF
    ObjectiveThe purpose of the study was to explore the influencing factors of adjacent vertebral re-fracture after percutaneous vertebroplasty (PVP) for osteoporosis vertebral compression fractures (OVCFs).MethodsWe retrospectively analyzed the clinical data of 55 patients with adjacent vertebral re-fracture after PVP operation for OVCFs in our hospital from January 2016 to June 2019, they were followed up for 1 year and included in the fracture group. According to the same inclusion and exclusion criteria, we collected the clinical data of 55 patients with OVCFs without adjacent vertebral re-fracture after PVP in the same period and included them in the non-fracture group. We performed univariate and multivariate logistic regression analysis on the influencing factors of adjacent vertebral re-fracture in patients with OVCFs after PVP.ResultsThere were significant differences in body mass index (BMI), bone mineral density (BMD) T-value, amount of bone cement injected, bone cement leakage, history of glucocorticoid use, cross-sectional area (CSA), cross-sectional area asymmetry (CSAA), fat infiltration rate (FIR), and fat infiltration rate asymmetry (FIRA) of lumbar posterior group muscles [multifidus (MF) and erector spinae (ES)] between the two groups (p < 0.05). There was no significant difference in sex, age, or time from the first fracture to operation, the CAS, CSAA, FIR, and FIRA of psoas major (PS) between the two groups (p > 0.05). Multivariate logistic regression showed that a higher dose of bone cement, greater CSAA and FIR of multifidus, and higher CSAA of erector spinae were independent risk factors for recurrent fractures of adjacent vertebrae after PVP.ConclusionThere are many risk factors for recurrent vertebral fracture after PVP in patients with OVCFs, and degeneration of paraspinal muscles (especially posterior lumbar muscles) may be one of the risks

    A Self-Attentive Hybrid Coding Network for 3D Change Detection in High-Resolution Optical Stereo Images

    No full text
    Real-time monitoring of urban building development provides a basis for urban planning and management. Remote sensing change detection is a key technology for achieving this goal. Intelligent change detection based on deep learning of remote sensing images is a current focus of research. However, most methods only use unimodal remote sensing data and ignore vertical features, leading to incomplete characterization, poor detection of small targets, and false detections and omissions. To solve these problems, we propose a multi-path self-attentive hybrid coding network model (MAHNet) that fuses high-resolution remote sensing images and digital surface models (DSMs) for 3D change detection of urban buildings. We use stereo images from the Gaofen-7 (GF-7) stereo mapping satellite as the data source. In the encoding stage, we propose a multi-path hybrid encoder, which is a structure that can efficiently perform multi-dimensional feature mining of multimodal data. In the deep feature fusion link, a dual self-attentive fusion structure is designed that can improve the deep feature fusion and characterization of multimodal data. In the decoding stage, a dense skip-connection decoder is designed that can fuse multi-scale features flexibly and reduce spatial information losses in small-change regions in the down-sampling process, while enhancing feature utilization and propagation efficiency. Experimental results show that MAHNet achieves accurate pixel-level change detection in complex urban scenes with an overall accuracy of 97.44% and F1-score of 92.59%, thereby outperforming other methods of change detection

    Comparison of safety and efficacy of posterior lumbar interbody fusion (PLIF) and modified transforaminal lumbar interbody fusion (M-TLIF) in the treatment of single-segment lumbar degenerative diseases

    No full text
    Abstract Objective To compare modified transforaminal lumbar interbody fusion (M-TLIF) with posterior lumbar interbody fusion (PLIF) in the treatment of single-segment lumbar degenerative disorders in order to assess its safety and effectiveness. Methods From January 2016 to January 2021, 74 patients who received single-segment M-TLIF were examined. A total of 74 patients having single-segment PLIF during the same time period were included in a retrospective controlled study using the same inclusion and exclusion criteria. The two groups were compared in terms of the fusion rate, the Oswestry disability index (ODI), the visual analogue scale of low back pain (VAS), the perioperative condition, the postoperative complications, and the postoperative neighbouring segment degeneration. Results All patients had surgery satisfactorily and were monitored for at least a year afterwards. The baseline values for the two groups did not significantly differ. The interbody fusion rate between PLIF (98.65%) and M-TLIF (97.30%) was not significantly different. In the follow-up, the M-TLIF group's VAS score for low back and leg pain was lower than that of the PLIF group. The ODI score of the M-TLIF group was lower than that of the PLIF group at 7 days and 3 months following surgery. Both groups' post-op VAS and ODI scores for low back and leg pain were much lower than those from before the procedure. In M-TLIF group, the operation time, drainage tube extraction time, postoperative bed rest time and hospital stay time were shorter, and the amount of intraoperative blood loss was less. Compared with those before operation, the height of intervertebral space and intervertebral foramen were significantly increased in both groups during postoperative follow-up (P < 0.05). The postoperative complications and adjacent segment degeneration of M-TLIF were significantly lower than those of PLIF. Conclusions M-TLIF is a safe and effective treatment for lumbar degenerative disorders, with a high fusion rate and no significant difference between M-TLIF and PLIF. M-TLIF's efficacy and safety are comparable to that of PLIF, particularly in terms of early relief of low back pain and improvement in quality of life following surgery. Therefore, M-TLIF technology can be popularized and applied in clinic

    An Innovative Signal Processing Scheme for Spaceborne Integrated GNSS Remote Sensors

    No full text
    The vigorous development of the global navigation satellite system (GNSS) has led to a boom in GNSS radio occultation (GNSS RO) and GNSS reflectometry (GNSS-R) techniques. Consequently, we have proposed an innovative signal processing scheme for spaceborne integrated GNSS remote sensors (SIGRS), combining a GNSS RO and a GNSS-R module. In the SIGRS, the GNSS-R module shares one precise orbit determination (POD) module with the GNSS RO module, and the GNSS-R module first achieves compatibility with GPS, BDS, and Galileo. Moreover, the programmable non-uniform delay resolution was introduced and first used by the SIGRS to generate the output DDM, which achieves a high delay resolution in the DDM central region around the specular point to improve the accuracy of basic observables but requires fewer delay bins than the conventional DDM with uniform delay resolution. The SIGRS has been successfully used to design the GNOS II onboard the Chinese FY-3E satellite, and the results of in-orbit operation validate the performance of the SIGRS, which means the SIGRS is an economically and technically efficient design and has become the first successful signal processing scheme for spaceborne integrated GNSS remote sensors around the world

    Are medical record front page data suitable for risk adjustment in hospital performance measurement? Development and validation of a risk model of in-hospital mortality after acute myocardial infarction

    No full text
    Objectives To develop a model of in-hospital mortality using medical record front page (MRFP) data and assess its validity in case-mix standardisation by comparison with a model developed using the complete medical record data.Design A nationally representative retrospective study.Setting Representative hospitals in China, covering 161 hospitals in modelling cohort and 156 hospitals in validation cohort.Participants Representative patients admitted for acute myocardial infarction. 8370 patients in modelling cohort and 9704 patients in validation cohort.Primary outcome measures In-hospital mortality, which was defined explicitly as death that occurred during hospitalisation, and the hospital-level risk standardised mortality rate (RSMR).Results A total of 14 variables were included in the model predicting in-hospital mortality based on MRFP data, with the area under receiver operating characteristic curve of 0.78 among modelling cohort and 0.79 among validation cohort. The median of absolute difference between the hospital RSMR predicted by hierarchical generalised linear models established based on MRFP data and complete medical record data, which was built as ‘reference model’, was 0.08% (10th and 90th percentiles: −1.8% and 1.6%). In the regression model comparing the RSMR between two models, the slope and intercept of the regression equation is 0.90 and 0.007 in modelling cohort, while 0.85 and 0.010 in validation cohort, which indicated that the evaluation capability from two models were very similar.Conclusions The models based on MRFP data showed good discrimination and calibration capability, as well as similar risk prediction effect in comparison with the model based on complete medical record data, which proved that MRFP data could be suitable for risk adjustment in hospital performance measurement
    corecore