11 research outputs found

    Non-destructive 3D Microtomography of Cerebral Angioarchitecture Changes Following Ischemic Stroke in Rats Using Synchrotron Radiation

    Get PDF
    A better understanding of functional changes in the cerebral microvasculature following ischemic injury is essential to elucidate the pathogenesis of stroke. Up to now, the simultaneous depiction and stereological analysis of 3D micro-architectural changes of brain vasculature with network disorders remains a technical challenge. We aimed to explore the three dimensional (3D) microstructural changes of microvasculature in the rat brain on 4, 6 hours, 3 and 18 days post-ischemia using synchrotron radiation micro-computed tomography (SRμCT) with a per pixel size of 5.2 μm. The plasticity of angioarchitecture was distinctly visualized. Quantitative assessments of time-related trends after focal ischemia, including number of branches, number of nodes, and frequency distribution of vessel diameter, reached a peak at 6 h and significantly decreased at 3 days and initiated to form cavities. The detected pathological changes were also proven by histological tests. We depicted a novel methodology for the 3D analysis of vascular repair in ischemic injury, both qualitatively and quantitatively. Cerebral angioarchitecture sustained 3D remodeling and modification during the healing process. The results might provide a deeper insight into the compensatory mechanisms of microvasculature after injury, suggesting that SRμCT is able to provide a potential new platform for deepening imaging pathological changes in complicated angioarchitecture and evaluating potential therapeutic targets for stroke

    Electric-field Control of Magnetism with Emergent Topological Hall Effect in SrRuO3 through Proton Evolution

    Full text link
    Ionic substitution forms an essential pathway to manipulate the carrier density and crystalline symmetry of materials via ion-lattice-electron coupling, leading to a rich spectrum of electronic states in strongly correlated systems. Using the ferromagnetic metal SrRuO3 as a model system, we demonstrate an efficient and reversible control of both carrier density and crystalline symmetry through the ionic liquid gating induced protonation. The insertion of protons electron-dopes SrRuO3, leading to an exotic ferromagnetic to paramagnetic phase transition along with the increase of proton concentration. Intriguingly, we observe an emergent topological Hall effect at the boundary of the phase transition as the consequence of the newly-established Dzyaloshinskii-Moriya interaction owing to the breaking of inversion symmetry in protonated SrRuO3 with the proton compositional film-depth gradient. We envision that electric-field controlled protonation opens a novel strategy to design material functionalities

    Reversible manipulation of the magnetic state in SrRuO3 through electric-field controlled proton evolution

    Get PDF
    Ionic substitution forms an essential pathway to manipulate the structural phase, carrier density and crystalline symmetry of materials via ion-electron-lattice coupling, leading to a rich spectrum of electronic states in strongly correlated systems. Using the ferromagnetic metal SrRuO3 as a model system, we demonstrate an efficient and reversible control of both structural and electronic phase transformations through the electric-field controlled proton evolution with ionic liquid gating. The insertion of protons results in a large structural expansion and increased carrier density, leading to an exotic ferromagnetic to paramagnetic phase transition. Importantly, we reveal a novel protonated compound of HSrRuO3 with paramagnetic metallic as ground state. We observe a topological Hall effect at the boundary of the phase transition due to the proton concentration gradient across the film-depth. We envision that electric-field controlled protonation opens up a pathway to explore novel electronic states and material functionalities in protonated material systems

    Electric Field–Controlled Multistep Proton Evolution in HxSrCoO2.5 with Formation of H–H Dimer

    Get PDF
    Ionic evolution–induced phase transformation can lead to wide ranges of novel material functionalities with promising applications. Here, using the gating voltage during ionic liquid gating as a tuning knob, the brownmillerite SrCoO2.5 is transformed into a series of protonated HxSrCoO2.5 phases with distinct hydrogen contents. The unexpected electron to charge‐neutral doping crossover along with the increase of proton concentration from x = 1 to 2 suggests the formation of exotic charge neutral H–H dimers for higher proton concentration, which is directly visualized at the vacant tetrahedron by scanning transmission electron microscopy and then further supported by first principles calculations. Although the H–H dimers cause no change of the valency of Co2+ ions, they result in clear enhancement of electronic bandgap and suppression of magnetization through lattice expansion. These results not only reveal a hydrogen chemical state beyond anion and cation within the complex oxides, but also suggest an effective pathway to design functional materials through tunable ionic evolution

    Electric-field control of tri-state phase transformation with a selective dual-ion switch

    No full text
    Materials can be transformed from one crystalline phase to another by using an electric field to control ion transfer, in a process that can be harnessed in applications such as batteries1, smart windows2 and fuel cells3. Increasing the number of transferrable ion species and of accessible crystalline phases could in principle greatly enrich material functionality. However, studies have so far focused mainly on the evolution and control of single ionic species (for example, oxygen, hydrogen or lithium ions4, 5, 6, 7, 8, 9, 10). Here we describe the reversible and non-volatile electric-field control of dual-ion (oxygen and hydrogen) phase transformations, with associated electrochromic2 and magnetoelectric11 effects. We show that controlling the insertion and extraction of oxygen and hydrogen ions independently of each other can direct reversible phase transformations among three different material phases: the perovskite SrCoO3−δ (ref. 12), the brownmillerite SrCoO2.5 (ref. 13), and a hitherto-unexplored phase, HSrCoO2.5. By analysing the distinct optical absorption properties of these phases, we demonstrate selective manipulation of spectral transparency in the visible-light and infrared regions, revealing a dual-band electrochromic effect that could see application in smart windows2, 9. Moreover, the starkly different magnetic and electric properties of the three phases—HSrCoO2.5 is a weakly ferromagnetic insulator, SrCoO3−δ is a ferromagnetic metal12, and SrCoO2.5 is an antiferromagnetic insulator13—enable an unusual form of magnetoelectric coupling, allowing electric-field control of three different magnetic ground states. These findings open up opportunities for the electric-field control of multistate phase transformations with rich functionalities
    corecore