1,404 research outputs found

    Soil moisture sensor network design for hydrological applications

    Get PDF
    Soil moisture plays an important role in the partitioning of rainfall into evapotranspiration, infiltration, and runoff, hence a vital state variable in hydrological modelling. However, due to the heterogeneity of soil moisture in space, most existing in situ observation networks rarely provide sufficient coverage to capture the catchment-scale soil moisture variations. Clearly, there is a need to develop a systematic approach for soil moisture network design, so that with the minimal number of sensors the catchment spatial soil moisture information could be captured accurately. In this study, a simple and low-data requirement method is proposed. It is based on principal component analysis (PCA) for the investigation of the network redundancy degree and K-means cluster analysis (CA) and a selection of statistical criteria for the determination of the optimal sensor number and placements. Furthermore, the long-term (10-year) 5 km surface soil moisture datasets estimated through the advanced Weather Research and Forecasting (WRF) model are used as the network design inputs. In the case of the Emilia-Romagna catchment, the results show the proposed network is very efficient in estimating the catchment-scale surface soil moisture (i.e. with NSE and r at 0.995 and 0.999, respectively, for the areal mean estimation; and 0.973 and 0.990, respectively, for the areal standard deviation estimation). To retain 90 % variance, a total of 50 sensors in a 22 124 km2 catchment is needed, and in comparison with the original number of WRF grids (828 grids), the designed network requires significantly fewer sensors. However, refinements and investigations are needed to further improve the design scheme, which are also discussed in the paper

    Generation of 3-Dimensional graph state with Josephson charge qubits

    Full text link
    On the basis of generations of 1-dimensional and 2-dimensional graph states, we generate a 3-dimensional N3-qubit graph state based on the Josephson charge qubits. Since any two charge qubits can be selectively and effectively coupled by a common inductance, the controlled phase transform between any two-qubit can be performed. Accordingly, we can generate arbitrary multi-qubit graph states corresponding to arbitrary shape graph, which meet the expectations of various quantum information processing schemes. All the devices in the scheme are well within the current technology. It is a simple, scalable and feasible scheme for the generation of various graph states based on the Josephson charge qubits.Comment: 4 pages, 4 figure

    Cosmological Constraint and Analysis on Holographic Dark Energy Model Characterized by the Conformal-age-like Length

    Full text link
    We present a best-fit analysis on the single-parameter holographic dark energy model characterized by the conformal-age-like length, L=1a4(t)∫0tdt′a3(t′)L=\frac{1}{a^4(t)}\int_0^tdt' a^3(t') . Based on the Union2 compilation of 557 supernova Ia data, the baryon acoustic oscillation results from the SDSS DR7 and the cosmic microwave background radiation data from the WMAP7, we show that the model gives the minimal χmin2=546.273\chi^2_{min}=546.273, which is comparable to χΛCDM2=544.616\chi^2_{\Lambda{\rm CDM}}=544.616 for the Λ\LambdaCDM model. The single parameter dd concerned in the model is found to be d=0.232±0.006±0.009d=0.232\pm 0.006\pm 0.009. Since the fractional density of dark energy Ωde∼d2a2\Omega_{de}\sim d^2a^2 at a≪1a \ll 1, the fraction of dark energy is naturally negligible in the early universe, Ωde≪1\Omega_{de} \ll 1 at a≪1a \ll 1. The resulting constraints on the present fractional energy density of matter and the equation of state are \Omega_{m0}=0.286^{+0.019}_{-0.018}^{+0.032}_{-0.028} and w_{de0}=-1.240^{+0.027}_{-0.027}^{+0.045}_{-0.044} respectively. The model leads to a slightly larger fraction of matter comparing to the Λ\LambdaCDM model. We also provide a systematic analysis on the cosmic evolutions of the fractional energy density of dark energy, the equation of state of dark energy, the deceleration parameter and the statefinder. It is noticed that the equation of state crosses from wde>−1w_{de}>-1 to wde<−1w_{de}<-1, the universe transits from decelerated expansion (q>0q>0) to accelerated expansion (q<0q<0) recently, and the statefinder may serve as a sensitive diagnostic to distinguish the CHDE model with the Λ\LambdaCDM model.Comment: 17 pages, 5 figures, minor changes for the fitting data, references adde

    Evaluation of remotely sensed soil moisture for landslide hazard assessment

    Get PDF
    Soil moisture is important in the triggering of many types of landslides. However, in situ soil moisture data are rarely available in hazardous zones. The advanced remote sensing technology could provide useful soil moisture information. In this study, an assessment has been carried out between the latest version of the European Space Agency Climate Change Initiative soil moisture product and the landslide events in a northern Italian region in the 14-year period 2002-2015. A clear correlation has been found between the satellite soil moisture and the landslide events, as over four-fifths of events had soil wetness conditions above the 50% regional soil moisture line. Attempts have also been made to explore the soil moisture thresholds for landslide occurrences under different environmental conditions (land cover, soil type and slope). The results showed slope distribution could provide a rather distinct separation of the soil moisture thresholds, with thresholds becoming smaller for steeper areas, indicating dryer soil condition could trigger landslides at hilly areas than in plain areas. The thresholds validation procedure is then carried out. Forty five rainfall events between 2014 and 2015 are used as test cases. Contingency tables, statistical indicators, and receiver operating characteristic analysis for thresholds under different exceedance probabilities (1%-50%) are explored. The results have shown that the thresholds using 30% exceedance probability provide the best performance with the hitting rate at 0.92 and the false alarm at 0.50. We expect this study can provide useful information for adopting the remotely sensed soil moisture in the landslide early warnings

    Relationship between rainfall variability and the predictability of radar rainfall nowcasting models

    Get PDF
    Radar rainfall nowcasts are subject to many sources of uncertainty and these uncertainties change with the characteristics of a storm. The predictive skill of a radar rainfall nowcasting model can be difficult to understand as sometimes it appears to be perfect but at other times it is highly inaccurate. This hinders the decision making required for the early warning of natural hazards caused by rainfall. In this study we define radar spatial and temporal rainfall variability and relate them to the predictive skill of a nowcasting model. The short-term ensemble prediction system model is configured to predict 731 events with lead times of one, two, and three hours. The nowcasting skill is expressed in terms of six well-known indicators. The results show that the quality of radar rainfall nowcasts increases with the rainfall autocorrelation and decreases with the rainfall variability coefficient. The uncertainty of radar rainfall nowcasts also shows a positive connection with rainfall variability. In addition, the spatial variability is more important than the temporal variability. Based on these results, we recommend that the lead time for radar rainfall nowcasting models should change depending on the storm and that it should be determined according to the rainfall variability. Such measures could improve trust in the rainfall nowcast products that are used for hydrological and meteorological applications

    Comparison of rainfall microphysics characteristics derived by numerical weather prediction modelling and dual-frequency precipitation radar

    Get PDF
    The understanding of large-scale rainfall microphysical characteristics plays a significant role in meteorology, hydrology and natural hazards managements. Traditional instruments for estimating raindrop size distribution (DSD), including disdrometers and ground dual-polarization radars, are available only in limited areas. However, the development of space-based radars and mesoscale numerical weather prediction models would allow for DSD estimation on a large scale. This study investigated the performance of the weather research and forecasting (WRF) model and the global precipitation measurement mission (GPM) dual-frequency precipitation radar for DSD retrieval under different conditions. The DSD parameters (Dm and Nw), rain rate (R), rainfall kinetic energy (KE) and radar reflectivity (Z) were estimated in Chilbolton, United Kingdom, by using long-term disdrometer observations for validation. The rainfall kinetic energy–rain rate (KE–R) and radar reflectivity–rain rate (Z–R) relationships were explored using a disdrometer, the WRF model and GPM. It was found that the DSD parameter distribution trends of the three approaches are similar although the WRF model has larger Dm and smaller Nw values. In terms of the rainfall microphysical relationship, GPM performs better when both Ku- and Ka-band precipitation radars (KuPR and KaPR) observe precipitation simultaneously (R > 0.5 mm h−1), while the WRF model shows high accuracy in light rain (R < 0.5 mm h−1). The fusion of GPM and WRF model is recommended for the improved understanding of rainfall microphysical characteristics in ungauged areas

    Fingerprint oxygen redox reactions in batteries through high-efficiency mapping of resonant inelastic X-ray scattering

    Get PDF
    Realizing reversible reduction-oxidation (redox) reactions of lattice oxygen in batteries is a promising way to improve the energy and power density. However, conventional oxygen absorption spectroscopy fails to distinguish the critical oxygen chemistry in oxide-based battery electrodes. Therefore, high-efficiency full-range mapping of resonant inelastic X-ray scattering (mRIXS) has been developed as a reliable probe of oxygen redox reactions. Here, based on mRIXS results collected from a series of Li Ni Co Mn O electrodes at different electrochemical states and its comparison with peroxides, we provide a comprehensive analysis of five components observed in the mRIXS results. While all the five components evolve upon electrochemical cycling, only two of them correspond to the critical states associated with oxygen redox reactions. One is a specific feature at 531.0 eV excitation and 523.7 eV emission energy, the other is a low-energy loss feature. We show that both features evolve with electrochemical cycling of Li Ni Co Mn O electrodes, and could be used for characterizing oxidized oxygen states in the lattice of battery electrodes. This work provides an important benchmark for a complete assignment of all mRIXS features collected from battery materials, which sets a general foundation for future studies in characterization, analysis, and theoretical calculation for probing and understanding oxygen redox reactions. 1.17 0.21 0.08 0.54 2 1.17 0.21 0.08 0.54

    The role of calcium stearate on regulating activation to form stable, uniform and flawless reaction products in alkali-activated slag cement

    Get PDF
    In the course of an investigation on using calcium stearate (CaSt) to improve performance of the alkali-activated slag (AAS) cement, the objective of the present work is to discovery its role in the AAS system. Special interest is devoted to understand the influence of CaSt on the reaction process, reaction products and microstructural features of the AAS cement. To achieve this, isothermal calorimetry, impedance characteristics, infrared spectroscopy, X-ray diffraction, thermogravimetry, nitrogen sorption, mercury intrusion porosimetry and scanning electron microscopy were carried out. According to results obtained, the CaSt has three important effects on the AAS cement. Firstly, it inhibited slag reaction with the activator through decreasing activity of alkalis, whereas the amount of C-(A)-S-H gels in the system depended on the usage of CaSt, because the CaSt could have chemical reactions with the alkali-solution and form similar reaction products. Secondly, there is less sodium and more calcium in reaction products of the CaSt added mix, which improve their stability and uniformity. Finally, microstructure characteristics (e.g. pore size distribution, pore connectivity) are optimised and defects are reduced significantly, when CaSt is added in the AAS mix

    Single-Cell Growth Rates in Photoautotrophic Populations Measured by Stable Isotope Probing and Resonance Raman Microspectrometry

    Get PDF
    A newmethod tomeasure growth rates of individual photoautotrophic cells by combining stable isotope probing (SIP) and single-cell resonance Raman microspectrometry is introduced. This report explores optimal experimental design and the theoretical underpinnings for quantitative responses of Raman spectra to cellular isotopic composition. Resonance Raman spectra of isogenic cultures of the cyanobacterium, Synechococcus sp., grown in 13C-bicarbonate revealed linear covariance between wavenumber (cm−1) shifts in dominant carotenoid Raman peaks and a broad range of cellular 13C fractional isotopic abundance. Single-cell growth rates were calculated from spectra-derived isotopic content and empirical relationships. Growth rates among any 25 cells in a sample varied considerably;mean coefficient of variation, CV, was 29±3%(s/x), of which only ∼2% was propagated analytical error. Instantaneous population growth rates measured independently by in vivo fluorescence also varied daily (CV ≈ 53%) and were statistically indistinguishable from single-cell growth rates at all but the lowest levels of cell labeling. SCRR censuses of mixtures prepared from Synechococcus sp. and T. pseudonana (a diatom) populations with varying 13C-content and growth rates closely approximated predicted spectral responses and fractional labeling of cells added to the sample. This approach enables direct microspectrometric interrogation of isotopically- and phylogenetically-labeled cells and detects as little as 3% changes in cellular fractional labeling. This is the first description of a non-destructive technique to measure single-cell photoautotrophic growth rates based on Raman spectroscopy and well-constrained assumptions, while requiring few ancillary measurements

    Consistency of shared reference frames should be reexamined

    Full text link
    In a recent Letter [G. Chiribella et al., Phys. Rev. Lett. 98, 120501 (2007)], four protocols were proposed to secretly transmit a reference frame. Here We point out that in these protocols an eavesdropper can change the transmitted reference frame without being detected, which means the consistency of the shared reference frames should be reexamined. The way to check the above consistency is discussed. It is shown that this problem is quite different from that in previous protocols of quantum cryptography.Comment: 3 pages, 1 figure, comments are welcom
    • …
    corecore