9,753 research outputs found

    Spin current through an ESR quantum dot: A real-time study

    Full text link
    The spin transport in a strongly interacting spin-pump nano-device is studied using the time-dependent variational-matrix-product-state (VMPS) approach. The precession magnetic field generates a dissipationless spin current through the quantum dot. We compute the real time spin current away from the equilibrium condition. Both transient and stationary states are reached in the simulation. The essentially exact results are compared with those from the Hartree-Fock approximation (HFA). It is found that correlation effect on the physical quantities at quasi-steady state are captured well by the HFA for small interaction strength. However the HFA misses many features in the real time dynamics. Results reported here may shed light on the understanding of the ultra-fast processes as well as the interplay of the non-equilibrium and strongly correlated effect in the transport properties.Comment: 5 pages, 5 figure

    Max-Fusion U-Net for Multi-Modal Pathology Segmentation with Attention and Dynamic Resampling

    Get PDF
    Automatic segmentation of multi-sequence (multi-modal) cardiac MR (CMR) images plays a significant role in diagnosis and management for a variety of cardiac diseases. However, the performance of relevant algorithms is significantly affected by the proper fusion of the multi-modal information. Furthermore, particular diseases, such as myocardial infarction, display irregular shapes on images and occupy small regions at random locations. These facts make pathology segmentation of multi-modal CMR images a challenging task. In this paper, we present the Max-Fusion U-Net that achieves improved pathology segmentation performance given aligned multi-modal images of LGE, T2-weighted, and bSSFP modalities. Specifically, modality-specific features are extracted by dedicated encoders. Then they are fused with the pixel-wise maximum operator. Together with the corresponding encoding features, these representations are propagated to decoding layers with U-Net skip-connections. Furthermore, a spatial-attention module is applied in the last decoding layer to encourage the network to focus on those small semantically meaningful pathological regions that trigger relatively high responses by the network neurons. We also use a simple image patch extraction strategy to dynamically resample training examples with varying spacial and batch sizes. With limited GPU memory, this strategy reduces the imbalance of classes and forces the model to focus on regions around the interested pathology. It further improves segmentation accuracy and reduces the mis-classification of pathology. We evaluate our methods using the Myocardial pathology segmentation (MyoPS) combining the multi-sequence CMR dataset which involves three modalities. Extensive experiments demonstrate the effectiveness of the proposed model which outperforms the related baselines.Comment: 13 pages, 7 figures, conference pape

    Active optical clock based on four-level quantum system

    Get PDF
    Active optical clock, a new conception of atomic clock, has been proposed recently. In this report, we propose a scheme of active optical clock based on four-level quantum system. The final accuracy and stability of two-level quantum system are limited by second-order Doppler shift of thermal atomic beam. To three-level quantum system, they are mainly limited by light shift of pumping laser field. These limitations can be avoided effectively by applying the scheme proposed here. Rubidium atom four-level quantum system, as a typical example, is discussed in this paper. The population inversion between 6S1/26S_{1/2} and 5P3/25P_{3/2} states can be built up at a time scale of 10−610^{-6}s. With the mechanism of active optical clock, in which the cavity mode linewidth is much wider than that of the laser gain profile, it can output a laser with quantum-limited linewidth narrower than 1 Hz in theory. An experimental configuration is designed to realize this active optical clock.Comment: 5 page

    Enhancement of Transition Temperature in FexSe0.5Te0.5 Film via Iron Vacancies

    Get PDF
    The effects of iron deficiency in FexSe0.5Te0.5 thin films (0.8<x<1) on superconductivity and electronic properties have been studied. A significant enhancement of the superconducting transition temperature (TC) up to 21K was observed in the most Fe deficient film (x=0.8). Based on the observed and simulated structural variation results, there is a high possibility that Fe vacancies can be formed in the FexSe0.5Te0.5 films. The enhancement of TC shows a strong relationship with the lattice strain effect induced by Fe vacancies. Importantly, the presence of Fe vacancies alters the charge carrier population by introducing electron charge carriers, with the Fe deficient film showing more metallic behavior than the defect-free film. Our study provides a means to enhance the superconductivity and tune the charge carriers via Fe vacancy, with no reliance on chemical doping.Comment: 15 pages, 4 figure

    Uncertainty Quantification in the Road-Level Traffic Risk Prediction by Spatial-Temporal Zero-Inflated Negative Binomial Graph Neural Network(STZINB-GNN)

    Get PDF
    Urban road-based risk prediction is a crucial yet challenging aspect of research in transportation safety. While most existing studies emphasize accurate prediction, they often overlook the importance of model uncertainty. In this paper, we introduce a novel Spatial-Temporal Zero-Inflated Negative Binomial Graph Neural Network (STZINB-GNN) for road-level traffic risk prediction, with a focus on uncertainty quantification. Our case study, conducted in the Lambeth borough of London, UK, demonstrates the superior performance of our approach in comparison to existing methods. Although the negative binomial distribution may not be the most suitable choice for handling real, non-binary risk levels, our work lays a solid foundation for future research exploring alternative distribution models or techniques. Ultimately, the STZINB-GNN contributes to enhanced transportation safety and data-driven decision-making in urban planning by providing a more accurate and reliable framework for road-level traffic risk prediction and uncertainty quantification

    A Sparse Intraoperative Data-Driven Biomechanical Model to Compensate for Brain Shift during Neuronavigation

    Get PDF
    BACKGROUND AND PURPOSE: Intraoperative brain deformation is an important factor compromising the accuracy of image-guided neurosurgery. The purpose of this study was to elucidate the role of a model-updated image in the compensation of intraoperative brain shift. MATERIALS AND METHODS: An FE linear elastic model was built and evaluated in 11 patients with craniotomies. To build this model, we provided a novel model-guided segmentation algorithm. After craniotomy, the sparse intraoperative data (the deformed cortical surface) were tracked by a 3D LRS. The surface deformation, calculated by an extended RPM algorithm, was applied on the FE model as a boundary condition to estimate the entire brain shift. The compensation accuracy of this model was validated by the real-time image data of brain deformation acquired by intraoperative MR imaging. RESULTS: The prediction error of this model ranged from 1.29 to 1.91 mm (mean, 1.62 +/- 0.22 mm), and the compensation accuracy ranged from 62.8% to 81.4% (mean, 69.2 +/- 5.3%). The compensation accuracy on the displacement of subcortical structures was higher than that of deep structures (71.3 +/- 6.1%; 66.8 +/- 5.0%, P \u3c .01). In addition, the compensation accuracy in the group with a horizontal bone window was higher than that in the group with a nonhorizontal bone window (72.0 +/- 5.3%; 65.7 +/- 2.9%, P \u3c .05). CONCLUSIONS: Combined with our novel model-guided segmentation and extended RPM algorithms, this sparse data-driven biomechanical model is expected to be a reliable, efficient, and convenient approach for compensation of intraoperative brain shift in image-guided surgery
    • …
    corecore