33 research outputs found

    Behind the Red Curtain: Environmental Concerns and the End of Communism

    Full text link

    An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation

    Get PDF
    Recently, the numerical modelling and simulation for anomalous subdiffusion equation (ASDE), which is a type of fractional partial differential equation( FPDE) and has been found with widely applications in modern engineering and sciences, are attracting more and more attentions. The current dominant numerical method for modelling ASDE is Finite Difference Method (FDM), which is based on a pre-defined grid leading to inherited issues or shortcomings. This paper aims to develop an implicit meshless approach based on the radial basis functions (RBF) for numerical simulation of the non-linear ASDE. The discrete system of equations is obtained by using the meshless shape functions and the strong-forms. The stability and convergence of this meshless approach are then discussed and theoretically proven. Several numerical examples with different problem domains are used to validate and investigate accuracy and efficiency of the newly developed meshless formulation. The results obtained by the meshless formulations are also compared with those obtained by FDM in terms of their accuracy and efficiency. It is concluded that the present meshless formulation is very effective for the modeling and simulation of the ASDE. Therefore, the meshless technique should have good potential in development of a robust simulation tool for problems in engineering and science which are governed by the various types of fractional differential equations

    Stability and convergence of a new finite volume method for a two-sided space-fractional diffusion equation

    Get PDF
    In this paper, we consider a two-sided space-fractional diffusion equation with variable coefficients on a finite domain. Firstly, based on the nodal basis functions, we present a new fractional finite volume method for the two-sided space-fractional diffusion equation and derive the implicit scheme and solve it in matrix form. Secondly, we prove the stability and convergence of the implicit fractional finite volume method and conclude that the method is unconditionally stable and convergent. Finally, some numerical examples are given to show the effectiveness of the new numerical method, and the results are in excellent agreement with theoretical analysis

    Numerical treatment of a two-dimensional variable-order fractional nonlinear reaction-diffusion model

    Get PDF
    A two-dimensional variable-order fractional nonlinear reaction-diffusion model is considered. A second-order spatial accurate semi-implicit alternating direction method for a two-dimensional variable-order fractional nonlinear reaction-diffusion model is proposed. Stability and convergence of the semi-implicit alternating direct method are established. Finally, some numerical examples are given to support our theoretical analysis. These numerical techniques can be used to simulate a two-dimensional variable order fractional FitzHugh-Nagumo model in a rectangular domain. This type of model can be used to describe how electrical currents flow through the heart, controlling its contractions, and are used to ascertain the effects of certain drugs designed to treat arrhythmia

    Numerical methods of fractional partial differential equations and applications

    No full text
    "LLC book introduces the theory and numerical methods in many areas of engineering and scientific research relating to fractional partial differential equations analysis results. most of these authors and their collaborators obtained research results. These fractional partial differential equations. including space. time. time - space fractional diffusion equation. fractional advection - diffusion equation of fractional reaction - diffusion equation. anomalous diffusion equation times. modified anomalous diffusion equation times. anomalous diffusion equation super. fractional Cable equation. including a number of time - space fractional partial differential equations and variational fractional partial differential equations..." -- Amazon website Abstract in Chinese: 本书主要介绍许多工程和科学研究领域中有关分数阶偏微分方程的数值方法及其理论分析的最新成果,这些内容大部分是作者及其合作者得到的研究成果。这些分数阶偏微分方程包括空间,时间,时间-空间分数阶扩散方程,分数阶对流-扩散方程,分数阶反应-扩散方程,反常次扩散方程,修正的反常次扩散方程,反常超扩散方程,分数阶Cable方程,也包括多项时间-空间分数阶偏微分方程和变分数阶偏微分方程。分数阶偏微分方程的数值方法及其理论分析包括有限差分方法,有限元方法,谱方法,有限体积方法,无网格方法。我们讨论了数值方法的稳定性和收敛性,给出了数值结果,同时我们也介绍分数阶偏微分方程的一些应用实例。 -- 当当图书</i

    Numerical Methods of Fractional Partial Differential Equations and Applications [分数阶偏微分方程数值方法及其应用]

    No full text
    "LLC book introduces the theory and numerical methods in many areas of engineering and scientific research relating to fractional partial differential equations analysis results. most of these authors and their collaborators obtained research results. These fractional partial differential equations. including space. time. time - space fractional diffusion equation. fractional advection - diffusion equation of fractional reaction - diffusion equation. anomalous diffusion equation times. modified anomalous diffusion equation times. anomalous diffusion equation super. fractional Cable equation. including a number of time - space fractional partial differential equations and variational fractional partial differential equations..." -- <i>Amazon website</i>\ud \ud Abstract in Chinese:\ud \ud 本书主要介绍许多工程和科学研究领域中有关分数阶偏微分方程的数值方法及其理论分析的最新成果,这些内容大部分是作者及其合作者得到的研究成果。这些分数阶偏微分方程包括空间,时间,时间-空间分数阶扩散方程,分数阶对流-扩散方程,分数阶反应-扩散方程,反常次扩散方程,修正的反常次扩散方程,反常超扩散方程,分数阶Cable方程,也包括多项时间-空间分数阶偏微分方程和变分数阶偏微分方程。分数阶偏微分方程的数值方法及其理论分析包括有限差分方法,有限元方法,谱方法,有限体积方法,无网格方法。我们讨论了数值方法的稳定性和收敛性,给出了数值结果,同时我们也介绍分数阶偏微分方程的一些应用实例。 -- <i>当当图书</i

    An advanced implicit meshless approach for the\ud non-linear anomalous subdiffusion equation

    No full text
    Recently, the numerical modelling and simulation for anomalous subdiffusion equation (ASDE), which is a type of fractional partial differential equation( FPDE) and has been found with widely applications in modern engineering and sciences, are attracting more and more attentions. The current dominant numerical method for modelling ASDE is Finite Difference Method (FDM), which is based on a pre-defined grid leading to inherited issues or shortcomings. This paper aims to develop an implicit meshless approach based on the radial basis functions (RBF) for numerical simulation of the non-linear ASDE. The discrete system of equations is obtained by using the meshless shape functions and the strong-forms. The stability and convergence of this meshless approach are then discussed and theoretically proven. Several numerical examples with different problem domains are used to validate and investigate accuracy and efficiency of the newly developed meshless formulation. The results obtained by the meshless formulations are also compared with those obtained by FDM in terms of their accuracy and efficiency. It is concluded that the present meshless formulation is very effective for the modeling and simulation of the ASDE. Therefore, the meshless technique should have good potential in development of a robust simulation tool for problems in engineering and science which are governed by the various types of fractional differential equations

    The Galerkin finite element approximation of the fractional cable equation

    No full text
    The cable equation is one of the most fundamental equations for modeling neuronal dynamics. Cable equations with a fractional order temporal derivative have been introduced to model electrotonic properties of spiny neuronal dendrites. In this paper, the fractional cable equation involving two integro-differential operators is considered. The Galerkin finite element approximations of the fractional cable equation are proposed. The main contribution of this work is outlined as follow: • A semi-discrete finite difference approximation in time is proposed. We prove that the scheme is unconditionally stable, and the numerical solution converges to the exact solution with order O(Δt). • A semi-discrete difference scheme for improving the order of convergence for solving the fractional cable equation is proposed, and the numerical solution converges to the exact solution with order O((Δt)2). • Based on the above semi-discrete difference approximations, Galerkin finite element approximations in space for a full discretization are also investigated. • Finally, some numerical results are given to demonstrate the theoretical analysis
    corecore