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An Advanced Implicit Meshless Approach for the
Anomalous Subdiffusion Equation

Y. T. Gu1, P. Zhuang2 and F. Liu 3

Abstract: Recently, the numerical modelling and simulation for anomalous sub-
diffusion equation (ASDE), which is a type of fractional partial differential equa-
tion(FPDE) and has been found with widely applications in modern engineering
and sciences, are attracting more and more attentions. The current dominant nu-
merical method for modelling ASDE is Finite Difference Method (FDM), which is
based on a pre-defined grid leading to inherited issues or shortcomings. This paper
aims to develop an implicit meshless approach based on the radial basis functions
(RBF) for numerical simulation of the ASDE. The discrete system of equations is
obtained by using the meshless shape functions and the strong-forms. The stabil-
ity and convergence of this meshless approach are then discussed and theoretically
proven. Several numerical examples with different problem domains are used to
validate and investigate accuracy and efficiency of the newly developed meshless
formulation. The results obtained by the meshless formulations are also compared
with those obtained by FDM in terms of their accuracy and efficiency. It is con-
cluded that the present meshless formulation is very effective for the modelling
and simulation of the ASDE. Therefore, the meshless technique should have good
potential in development of a robust simulation tool for problems in engineering
and science which are governed by the various types of fractional differential equa-
tions.
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1 Introduction

Recently, because of the new developments in sustainable environment and renew-
able energy, which are often governed by a series of fractional partial differential
equations (FPDE). It has been reported that, in numerous physical and biologi-
cal systems, many diffusion rates of species cannot be characterized by the sin-
gle parameter of the diffusion constant [Sokolov and Klafter (2005)]. Instead, the
(anomalous) diffusion is characterized by a scaling parameter α as well as a dif-
fusion constant K, and the mean square displacement of diffusing species 〈x2(t)〉
scales as a nonlinear power-law in time, i.e.,

〈x2(t)〉 ∼ 2Kα

Γ(1+α)
tα , t → ∞,

where α (0 < α < 1) is the anomalous diffusion exponent and Kα is the gen-
eralized diffusion coefficient. Ordinary (or Brownian) diffusion corresponds to
α = 1 with K1 = D (the ordinary diffusion coefficient). For example, single parti-
cle tracking experiments and photo-bleaching recovery experiments have revealed
sub-diffusion (0 < α < 1) of proteins and lipids in a variety of cell membranes
[Brown, Wu, Zipfel, and Webb (1999); Feder, Brust-Mascher, Slattery, Baird, and
Webb (1996); Ghosh (1991); Ghosh and Webb (1994); Sheets, Lee, Simson, and
Jacobson (1997); Slattery (1991); Smith, Morrison, Wilson, Fernandez, and Cherry
(1999)]. Anomalous subdiffusion has also been observed in neural cell adhesion
molecules [Simson, Yang, Moore, Doherty, Walsh, and Jacobson (1998)]. Indeed
anomalous subdiffusion (the case with 0 < α < 1) is generic in media with obstacles
[Saxton (1994, 2001)] or binding sites [Saxton (1996)]. For anomalous subdiffu-
sive random walks, the continuum description via the ordinary diffusion equation
is replaced by the anomalous subdiffusion equations. The numerical modelling and
simulation for the anomalous subdiffusion equation are attracting more and more
attentions from researchers [Agrawal, Machado, and Sabatier (2004), Butzer and
Georges (2000), Kenneth and Bertram (1993), Yuste and Acedo (2005), Langlands
and Henry (2005), Chen, Liu, Turner, and Anh (2007), Zhuang, Liu, Anh, and
Turner (2008)]. Fractional kinetic equations (FKE) includes a class of anomalous
subdiffusion equations, such as fractional diffusion equation, modified anomalous
subdiffusion equation, fractional advection-diffusion equation, fractional Fokker-
Planck equation, fractional cable equation etc., are recognized as useful approaches
for the description of transport dynamics in complex systems including systems
exhibiting Halmiltonian chaos, disordered medium, plasma and fluid turbulence,
underground water pollution, dynamics of protein molecules, motions under the
influence of optical tweezers, reactions in complex systems, and more [Chechkin,
Gonchar, Kflafter, and Metzler (2006), Metzler and Klafter (2000), Metzler and
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Klafter (2004), Sokolov, Klafter, and Blumen (2002), Zaslavsky (2002)]. When the
fractional kinetic equations describe the asymptotic behaviour of continuous time
random walks, their solutions correspond to the Lévy walks. The advantage of the
fractional kinetic model basically lies in the straightforward way of including ex-
ternal force terms and of calculating boundary value problems. Therefore, FKE
results in a more accurate representation of the relative phenomena than normal
partial differential equations (PDE). Unlike the normal PDE, the differential order
(regarding to time or space or both) of a FKE is not with a integer order, in other
words, the differential order might be a fractional order (i.e., 0.5th order, 1.5th or-
der, and so on), which will lead to a big difficulty in numerical simulation, because
most existing numerical simulation techniques are developed for the PDE with a
integer differential order.

Yuste and Acedo [Yuste and Acedo (2005)] proposed an explicit Finite Difference
Method(FDE) and a new Von Neumann-type stability analysis for the anomalous
subdiffusion equation. However, they did not give a convergence analysis and
pointed out the difficulty of this task when implicit methods are considered. Lang-
lands and Henry [Langlands and Henry (2005)] also investigated this problem and
proposed an implicit numerical scheme (L1 approximation), and discussed the ac-
curacy and stability of this scheme. However, the global accuracy of the implicit
numerical scheme has not been derived and it seems that the unconditional stabil-
ity for all γ in the range 0 < γ ≤ 1 has not been established. Chen and Liu et al.
[Chen, Liu, Turner, and Anh (2007)] presented a Fourier method for the anomalous
sub-diffusion equation, and they gave the stability analysis and the global accuracy
analysis of the difference approximation scheme. Zhuang and Liu et al. [Zhuang,
Liu, Anh, and Turner (2008)] also proposed analytical techniques of implicit nu-
merical methods for the anomalous sub-diffusion equation. At present, most of
the anomalous sub-diffusion equations are solved numerically by Finite Difference
Method (FDM) in one dimensional case [Langlands and Henry (2005); Yuste and
Acedo (2005); Chen, Liu, Turner, and Anh (2007); Zhuang, Liu, Anh, and Turner
(2008)], and a few research has been reported using Finite Element Method (FEM)
[Ervin and Roop (2005)- Ervin, Heuer, and Roop (2007)].

FDM and FEM are numerical approaches based on pre-defined meshes/grids, which
lead to inherited issues or shortcomings including: a) difficulty in handling a com-
plicated problem domain; b) difficulty in handling the Newman boundary condi-
tions, c) difficulty in handling irregular nodal distribution; d) difficulty in conduct-
ing adaptive analysis, and e) low accuracy. Therefore, these shortcomings become
the main barrier for the development of a powerful simulation tool for real appli-
cations governed by FPDE, and most current research in this field is still limited in
some one-dimensional (1-D) or two-dimensional (2-D) benchmark problems with
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very simple problem domains (i.e., squares and rectangles) and Direkle boundary
conditions. It already becomes crucial to develop an alternative numerical tech-
nique for modeling and simulation of FPDE.

Recent years, a group of meshless (or meshfree) methods have been developed and
successfully used in many fields. Depending on whether a numerical integration
is used in developing the system of algebraic equations, the meshless methods can
be largely grouped into two different categories: meshless methods based on collo-
cation techniques (with Dirac-delta-test functions) and meshless methods based on
the general weak-forms (with non-Dirac-delta-test function) of ordinary (partial)
differential equations (ODEs or PDEs). The meshless methods based on collo-
cation techniques, which can be developed by using Dirac- delta-test function in
the weak-form, have a relatively long history, and they include smooth particle
hydrodynamics (SPH) [Gingold and Moraghan (1977)], the meshless collocation
methods [Kansa (1990)], finite point method (FPM) [Onate, Idelsohn, Zienkiewicz,
Taylor, and Sacco (1996)], etc. The so-called meshless methods, using various
global weak-forms, were proposed about twenty years ago. This category of mesh-
less methods includes the diffuse element method (DEM) [Nayroles, Touzot, and
Villon (1992)], the element-free Galerkin (EFG) method [Belytschko, Lu, and Gu
(1994)], and so on. The meshless methods based on the weak-forms, in general,
exhibit very good stability and accuracy. Therefore, they have been successfully
applied in problems of solid mechanics and fluid mechanics. However, in particu-
lar, the above-mentioned so-called meshless methods are meshless only in terms of
the interpolation of the field variables, as compared to the conventional FEM. Most
of them have to use global background cells (mesh) to integrate a weak-form over
a global problem domain. The global background mesh for integration makes them
to be not truly meshless, or they can be considered as advanced or modified cases
of the FEM. In order to alleviate the global integration background mesh, the mesh-
less local Petrov-Galerkin (MLPG) methods were proposed by Atluri et al. [Atluri
and Zhu (1998a); Atluri and Zhu (1998b); Atluri, Kim, and Cho (1999); Atluri
and Shen (2002a);Atluri and Shen (2002b); Atluri, Han, and Rajendran (2004)]. In
the MLPG, Petorv-Galerkin local weak-forms, integrated in regular-shaped local
domains, were developed. The local integration domain can be as simple as pos-
sible (such as circles, ellipses, rectangles, or triangles in 2-D; spheres, rectangular
parallelepipeds, or ellipsoids in 3-D) and can be automatically constructed in com-
puting. Therefore, MLPG advances a big step to the final target of a truly meshless
method.

The above discussed meshless methods have demonstrated some distinguished ad-
vantages [Liu and Gu (2005)] including: 1) they do not use a mesh (at least in
field approximation), so that the burden of mesh generation in FDM and FEM is
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overcome. Hence, an adaptive analysis is easily achievable; 2)they are usually
more accurate than FDM and FEM due to the use of higher order meshless trial
functions; and 3)they are capable of solving complex problems that are difficult
for the conventional FDM and FEM. Because of these unique advantages, mesh-
less methods seem to have a good potential for the simulation of FSDE. Although
the meshless methods have been successfully applied to a wide range of problems,
for which, however, the governing equations are conventional PDE with an integer
order, very limited work was reported to handle fractional partial differential equa-
tions (FPDE) by the meshless techniques [Chen, Ye, and Sunr (2009)]. This topic
calls for a significant development.

The objective of this paper is to develop an implicit meshless formulation based on
the radial basis functions (RBF) for numerical simulation of anomalous subdiffu-
sion equation. The discrete equations for two-dimensional anomalous subdiffusion
equation are obtained, based on the meshless shape functions and the strong-forms.
The essential boundary conditions are enforced by the direct collocation method
[Zhu and Atluri (1998); Atluri, Kim, and Cho (1999)]. The stability and conver-
gence of this method are then discussed and theoretically proven. Several numeri-
cal examples with different problem domains and different nodal distributions are
used to validate and investigate accuracy and efficiency of the newly developed
meshless formulation. Some key parameters, which affect the performance of this
meshless technique, are also thoroughly investigated and the optimized parameters
are recommended.

The paper is organized as follows: a finite difference scheme for temporal dis-
cretization of time is pro-posed in Section 2, where the stability and convergence
analysis is given. The RBF interpolation approximation is briefed in Section 3. In
section 4, we propose the meshless scheme for temporal discretization. Numerical
examples are studied and discussed in Section 5. Finally, conclusions are presented
in Section 6.

2 Discretization of time

Subdiffusive motion is particularly important in the context of complex systems
such as glassy and disordered materials, in which pathways are constrained for ge-
ometric or energetic reasons. For anomalous subdiffusive random walkers, the con-
tinuum description via the ordinary diffusion equation is replaced by the fractional
diffusion equation[Metzler and Klafter (2000), Yuste and Acedo (2004), Yuste and
Acedo (2005), Langlands and Henry (2005)].

In this paper, we consider the following anomalous subdiffusion equation with non-
linear source term
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∂u(x, t)
∂ t

= κ0D1−α
t [∆u(x, t)]+ f (u,x, t), x ∈Ω⊂ Rd , t > 0 (1)

together with the general boundary and initial conditions

u(x, t) = g(x, t), x ∈ ∂Ω⊂ Rd , 0 < t ≤ T (2)

u(x, t) = u0(x), t = 0 (3)

where ∆ is the Laplace differential operator, Ω is a bounded domain in R2, ∂Ω is the
boundary of Ω, κ the diffusion coeffusion coefficient, f (u,x, t), g(x, t) and u0(x)
are known functions. We suppose that the function f (u,x, t) satisfies the Lipschitz
condition, i.e.,

| f (u1,x, t)− f (u2,x, t)| ≤ L|u1−u2|, ∀u1,u2. (4)

In Eq. (1), 0D1−α
t u(x, t) is the Riemann-Liouville fractional derivative of order

1−α (0 < α < 1) defined as

0D1−α
t u(x, t) =

1
Γ(α)

∂
∂ t

∫ t

0
(t−η)α−1u(x,η)dη . (5)

2.1 Time Discretization

Define tk = k∆t, k = 0,1,2, . . ., where ∆t = T/n is time stepsize. And we suppose
that ∆t ≤ 1/L.

By integrating both sides of (1), we obtain

u(x, tk+1)−u(x, tk) = κ
[

0D−α
t ∆u(x, tk+1)−0 D−α

t ∆u(x, tk)
]
+

∫ tk+1

tk
f (u,x, t)dt (6)

where the time fractional integral 0D−α
t u(x, tk) at t = tk can be approximated as

follow

0D−α
t u(x, tk) = 1

Γ(α)

k−1
∑
j=0

∫ t j+1
t j (tk−η)α−1u(x,η)dη

= 1
Γ(α)

k−1
∑
j=0

u(x, t j+1)
∫ t j+1

t j (tk−η)α−1dη + R̃k

(7)

where

R̃k = 1
Γ(α)

k−1
∑
j=0

∫ t j+1
t j [u(x,η)−u(x, t j+1)] · (tk−η)α−1dη

= 1
Γ(α)

k−1
∑
j=0

[
u(x,ξ ( j)

1 )−u(x, t j+1)
]∫ t j+1

t j (tk−η)α−1dη

= 1
Γ(α)

k−1
∑
j=0

∂u(x,ξ ( j)
2 )

∂ t (ξ ( j)
1 − t j)

∫ t j+1
t j (tk−η)α−1dη
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and t j ≤ ξ ( j)
1 ≤ ξ ( j)

2 ≤ t j+1.

Suppose that ∂u(x,t)
∂ t ∈C(Ω× [0,T ]), then

|R̃k| ≤
Ctα

k
Γ(1+α)

∆t max
x∈Ω,t∈[0,T ]

∣∣∣∣
∂u(x, t)

∂ t

∣∣∣∣ . (8)

Let b j = ( j +1)α − jα , j = 0,1,2, . . . ,n, then Eq. (7) can be rewritten as

0D−α
t u(x, tk) =

(∆t)α

Γ(1+α)

k−1

∑
j=0

bk−1− ju(x, t j+1)+ R̃k, (9)

or

0D−α
t u(x, tk) = (∆t)α

Γ(1+α)

k−1
∑
j=0

b ju(x, tk− j)+ R̃k. (10)

Because

0D−α
t u(x, tk+1)

= 1
Γ(α)

∫ tk+1
0 (tk+1−η)α−1u(x,η)dη

= 1
Γ(α)

∫ ∆t
0 (tk+1−η)α−1u(x,η)dη + 1

Γ(α)
∫ tk+1

t1 (tk+1−η)α−1u(x,η)dη
= 1

Γ(α)
∫ ∆t

0 (tk+1−η)α−1u(x,η)dη + 1
Γ(α)

∫ tk
0 (tk−η)α−1u(x,η +∆t)dη ,

thus,
0D−α

t u(x, tk+1)−0 D−α
t u(x, tk)

= 1
Γ(α)

∫ ∆t
0 (tk+1−η)α−1u(x,η)dη

+ 1
Γ(α)

∫ tk
0 (tk−η)α−1 [u(x,η +∆t)−u(x,η)]dη ,

From (10) and (8), we have[Zhuang, Liu, Anh, and Turner (2008)]

1
Γ(α)

∫ tk
0 (tk−η)α−1 [u(x,η +∆t)−u(x,η)]dη

= (∆t)α

Γ(1+α)

k−1
∑
j=0

b j
[
u(x, tk+1− j)−u(x, tk− j)

]
+R(1)

k ,

where

|R(1)
k | ≤ Ctα

k
Γ(1+α)

∆t max
x∈Ω,t>0

∣∣∣∣
∂ [u(x, t +∆t)−u(x, t)]

∂ t

∣∣∣∣≤C1(∆t)2.

Note that[Zhuang, Liu, Anh, and Turner (2008)]

1
Γ(α)

∫ ∆t
0 (tk+1−η)α−1u(x,η)dη = 1

Γ(α)
∫ ∆t

0 (tk+1−η)α−1u(x,∆t)dη +R(2)
k

= bk
Γ(1+α)u(x, t1)+R(2)

k ,
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where |R(2)
k | ≤C2bk(∆t)1+α .

We also have
∫ tk+1

tk
f (u,x,η)dη =

∆t
2

[ f (u(x, tk+1),x, tk+1)+ f (u(x, tk),x, tk)]+R(3)
k ,

where |R(3)
k | ≤C3(∆t)2.

Lemma 1[Zhuang, Liu, Anh, and Turner (2008)] The coefficients bk(k = 0,1,2 . . . ,n)
satisfy

(1)b0 = 1 > b1 > b2 > .. . > bn > 0,

(2)There is a positive constant C > 0 such that ∆t ≤Cbk(∆t)α .

Thus, from (6) we can obtain

u(x, tk+1) = u(x, tk)+ r

{
bk∆u(x, t1)+

k−1
∑
j=0

b j
[
∆u(x, tk+1− j)−∆u(x, tk− j)

]
}

+∆t
2 [ f (u(x, tk+1),x, tk+1)+ f (u(x, tk),x, tk)]+Rk+1

(11)

where r = κ (∆t)α

Γ(α+1) , and

|Rk+1| ≤Cbk(∆t)1+α . (12)

The equation (11) can be rewritten as

u(x, tk+1)− r∆u(x, tk+1)

= u(x, tk)+ r
k−1
∑
j=0

(b j+1−b j)∆u(x, tk− j)

+∆t
2 [ f (u(x, tk+1),x, tk+1)+ f (u(x, tk),x, tk)]+Rk+1.

(13)

Let uk = uk(x) be the numerical approximation to u(x, tk), then the equation (1) can
be discretized as the following scheme

uk+1− r∆uk+1 = uk + r
k−1
∑
j=0

(b j+1−b j)∆uk− j

+∆t
2

[
f (uk+1,x, tk+1)+ f (uk,x, tk)

]
.

(14)

u0 = u0(x) (15)

uk|∂Ω = g(x, tk), k = 0,1, . . . ,n. (16)



Manuscript Preparation for CMES 9

2.2 Stability and Convergency

In order to discuss the stability and convergency of (14), let us introduce to the
following inner product

(v,w) =
∫∫

Ω

v(x)w(x)dxdy (17)

and norm in L2

‖v‖2 = [(v,v)]1/2 =




∫∫

Ω

v2(x)dxdy




1/2

(18)

Suppose that ũk = ũk(x), k = 1,2, . . . ,n is the solution of the Eq. (14) with the initial
condition u(x,0) = ũ0 and the boundary condition (16), then the error εk(x) =
uk(x)− ũk(x) satisfies

εk+1− r∆εk+1 = εk + r
k−1
∑
j=0

(b j+1−b j)∆εk− j

+∆t
2

[
f (uk+1,x, tk+1)− f (ũk+1,x, tk+1)

]
+∆t

2

[
f (uk,x, tk)− f (ũk,x, tk)

]
,

(19)

ε0 = u(x,0)− ũ0(x), (20)

εk+1|∂Ω = 0. (21)

Theorem 1 The fractional implicit numerical method defined by (14) is un-conditionally
stable. And we have

‖εk‖2 ≤ eLT‖ε0‖2.

Proof Multiplying (19) by εk+1 and integrating on Ω, we obtain

(εk+1,εk+1)− r(∆εk+1,εk+1)

= (εk,εk+1)+ r
k−1
∑
j=0

(b j+1−b j)(∆εk− j,εk+1)

+∆t
2

(
f (uk+1,x, tk+1)− f (ũk+1,x, tk+1),εk+1

)
+∆t

2

(
f (uk,x, tk)− f (ũk,x, tk),εk

)
,

(22)

i. e.,

‖εk+1‖2
2 + r

(
‖ ∂εk+1

∂x ‖2
2 +‖ ∂εk+1

∂y ‖2
2

)

= (εk,εk+1)+ r
k−1
∑
j=0

(b j−b j+1)
[(

∂εk− j

∂x , ∂εk+1

∂x

)
+

(
∂εk− j

∂y , ∂εk+1

∂y

)]

+∆t
2

(
f (uk+1,x, tk+1)− f (ũk+1,x, tk+1),εk+1

)
+∆t

2

(
f (uk,x, tk)− f (ũk,x, tk),εk

)
,

(23)
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Using Schwarz inequality, from (4) and the inequality[Liu, Zhuang, Anh, Turner,
and Burrage (2007)]

b j ≥ b j+1, j = 0,1, . . . ,n−1,

we have

‖εk+1‖2
2 + r

(
‖ ∂εk+1

∂x ‖2
2 +‖ ∂εk+1

∂y ‖2
2

)

≤ 1
2

[‖εk‖2
2 +‖εk+1‖2

2
]

+ r
2

k−1
∑
j=0

(b j−b j+1)
[
‖ ∂εk− j

∂x ‖2
2 +‖ ∂εk− j

∂y ‖2
2 +‖ ∂εk+1

∂x ‖2
2 +‖ ∂εk+1

∂y ‖2
2

]

+∆tL
2 ‖εk+1‖2

2 ++∆tL
2 ‖εk‖2

2,

(24)

Note that
k−1
∑
j=0

(b j−b j+1) = 1−bk ≤ 1, hence,

(1−∆tL)‖εk+1‖2
2 + r

k
∑
j=0

b j

[
‖ ∂εk+1− j

∂x ‖2
2 +‖ ∂εk+1− j

∂y ‖2
2

]

≤ ‖εk‖2
2 + r

k−1
∑
j=0

b j

[
‖ ∂εk− j

∂x ‖2
2 +‖ ∂εk− j

∂y ‖2
2

]
+∆tL‖εk‖2

2,
(25)

Let Ek = ‖εk‖2
2 + r

k−1
∑
j=0

b j

[
‖ ∂εk− j

∂x ‖2
2 +‖ ∂εk− j

∂y ‖2
2

]
, then

(1−∆tL)Ek+1 ≤ (1+∆tL)Ek

i. e.,

Ek+1 ≤ 1+∆tL
1−∆tL

Ek ≤
(

1+∆tL
1−∆tL

)2

Ek−1 ≤ . . .≤
(

1+∆tL
1−∆tL

)k+1

E0.

Hence, for ∀ 1≤ k ≤ n, we have

‖εk‖2
2 ≤ Ek ≤

(
1+∆tL
1−∆tL

)n

E0 ≤ e2LT‖ε0‖2
2.

Theorem 2 Suppose that the exact solution u(x, t) of (1)-(3) satisfies ∂ 2u(x,t)
∂ t2 ∈

C(Ω× [0,T ]),
{

uk(x)
}n

k=0 be the time-discrete solution of (14) with initial condi-
tion u0(x) = u(x,0) and the boundary condition (16), then we have the following
error estimates

‖u(x, tk)−uk(x)‖2 ≤C∆t, (26)
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where C is a positive constant.

Proof Let ξ k(x) = u(x, tk)−u(x), from (11) and (14), we obtain

ξ k+1− r∆ξ k+1 = ξ k + r
k−1
∑
j=0

(b j+1−b j)∆ξ k− j

+∆t
2

[
f (u(x, tk+1),x, tk+1)− f (uk+1,x, tk+1)

]
+∆t

2

[
f (u(x, tk),x, tk)− f (uk,x, tk)

]
+Rk+1,

(27)

ξ 0(x) = 0, (28)

ξ k(x)|∂Ω = 0. (29)

where Rk+1 ≤Cbk(∆t)1+α .

Multiplying (19) by ξ k+1 and integrating on Ω, we obtain

‖ξ k+1‖2
2 + r

(
‖ ∂ξ k+1

∂x ‖2
2 +‖ ∂ξ k+1

∂y ‖2
2

)

= (ξ k,ξ k+1)+ r
k−1
∑
j=0

(b j−b j+1)
[(

∂ξ k− j

∂x , ∂ξ k+1

∂x

)
+

(
∂ξ k− j

∂y , ∂ξ k+1

∂y

)]

+∆t
2

(
f (u(x, tk+1),x, tk+1)− f (ũk+1,x, tk+1),εk+1

)
+∆t

2

(
f (u(x, tk),x, tk)− f (ũk,x, tk),εk

)
+(Rk+1,ξ k+1),

(30)

Using Schwarz inequality, from (4) and the inequality[Liu, Zhuang, Anh, Turner,
and Burrage (2007)]

b j ≥ b j+1, j = 0,1, . . . ,n−1,

we have

‖ξ k+1‖2
2 + r

(
‖ ∂ξ k+1

∂x ‖2
2 +‖ ∂ξ k+1

∂y ‖2
2

)

≤ 1
2

[‖ξ k‖2
2 +‖ξ k+1‖2

2
]

+ r
2

k−1
∑
j=0

(b j−b j+1)
[
‖ ∂ξ k− j

∂x ‖2
2 +‖ ∂ξ k− j

∂y ‖2
2 +‖ ∂ξ k+1

∂x ‖2
2 +‖ ∂ξ k+1

∂y ‖2
2

]

+∆tL
2 ‖ξ k+1‖2

2 + ∆tL
2 ‖ξ k‖2

2 + |(Rk+1,ξ k+1)|,

(31)

Note that
k−1
∑
j=0

(b j−b j+1) = 1−bk ≤ 1, hence,

(1−∆tL)‖ξ k+1‖2
2 + r

k
∑
j=0

b j

[
‖ ∂ξ k+1− j

∂x ‖2
2 +‖ ∂ξ k+1− j

∂y ‖2
2

]

≤ ‖ξ k‖2
2 + r

k−1
∑
j=0

b j

[
‖ ∂ξ k− j

∂x ‖2
2 +‖ ∂ξ k− j

∂y ‖2
2

]

−bkr
[
‖ ∂ξ k+1

∂x ‖2
2 +‖ ∂ξ k+1

∂y ‖2
2

]
+ |(Rk+1,ξ k+1)|+∆tL‖ξ k‖2

2,

(32)
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Using u(x,y, t) =
∫ x

a
∂u
∂x dx =

∫ y
a

∂u
∂y dy, we know that there is a positive constant A,

such that

‖ξ k+1‖2
2 ≤ A

[
‖∂ξ k+1

∂x
‖2

2 +‖∂ξ k+1

∂y
‖2

2

]
.

Thus,

(1−∆tL)‖ξ k+1‖2
2 + r

k
∑
j=0

b j

[
‖ ∂ξ k+1− j

∂x ‖2
2 +‖ ∂ξ k+1− j

∂y ‖2
2

]

≤ (1+∆tL)‖ξ k‖2
2 + r

k−1
∑
j=0

b j

[
‖ ∂ξ k− j

∂x ‖2
2 +‖ ∂ξ k− j

∂y ‖2
2

]
− bkr

A ‖ξ k+1‖2
2

+|(Rk+1,ξ k+1)|,

(33)

Using |(v,w)| ≤ a‖v‖2
2 + 1

4a‖w‖2
2 and

|(Rk+1,ξ k+1)| ≤ bkr
A
‖ξ k+1‖2

2 +
A

4bkr
‖Rk+1‖2

2 ≤
bkr
A
‖ξ k+1‖2

2 +Cbk(∆t)2+α .

Let ρk = ‖ξ k‖2
2 + r

k−1
∑
j=0

b j

[
‖ ∂ξ k− j

∂x ‖2
2 +‖ ∂ξ k− j

∂y ‖2
2

]
, then

ρk+1 ≤ 1+∆tL
1−∆tL

[
ρk +Cbk(∆t)2+α]

.

i. e., for ∀ 1≤ k ≤ n, we have

‖ξ k‖2
2 ≤ ρk ≤

(
1+LT/n
1−LT/n

)n
[

ρ0 +C
n−1

∑
j=0

bk(∆t)2+α

]
.

Note that
n−1
∑
j=0

bk(∆t)α = (n∆t)α = T α and ρ0 = 0, hence,

‖ξ k‖2 ≤
√

CT αeLT ∆t.

3 Radial basis point interpolation

In this section, we present a collocation scheme using RBFs to Eq. (??).

The approximation of a function u(x), using RBF, may be written as a linear com-
bination of n radial basis functions and m polynomial basis functions

uh(x) =
n

∑
i=1

aiR(‖r− ri‖,ci)+
m

∑
j=1

an+ j p j(x) (34)
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where R(‖r− ri‖,ci) is the radial basis functions (RBF), n is the number of the
nodes in the support domain of x, p j(x) is monomials, m is the number of poly-
nomial basis functions, coefficient ai are interpolation coefficients. In the RBF
R(‖r− ri‖,ci), the variable is only the distance ‖r− ri‖, between the interpolation
point x and a node xi.

There are a number of RBFs that can be used, such as

Modified Multi-quadrics(MQ) function

R(‖r− ri‖,ci) =
(‖r− ri‖2 + c2

i
)q

,

Gaussian basis function

R(‖r− ri‖,ci) = e−c2
i (‖r−ri‖2/r2

c ),

and Thin plate spline function

R(‖r− ri‖,ci) = ‖r− ri‖2M log(‖r− ri‖).

The MQ RBF replaces the classical finite difference and finite element spatial dis-
cretization schemes by a exponentially convergent, grid-free scattered data approxi-
mation scheme. Finite difference and finite element methods use low-order polyno-
mial basis functions. MQ in contrast is very high order[Moridis and Kansa (1994)].
The advantages/disadvantages associated with finite difference, finite element, and
MQ methods have been widely discussed. In this paper, we apply the MQ scheme
to solve the two-dimensional anomalous subdiffusion equation.

The second term of Eq. (34) consists of polynomials. To ensure invertible interpo-
lation matrix of RBF, the polynomial is often needed to augment RBF to guarantee
the non-singularity of the Matrix. In addition, the linear polynomial added into the
RBF can also ensure linear consistence and improve the interpolation accuracy. In
this study, we take linear polynomial, i. e., m = 3.

The cofficients ai in equation (34) can be determined by enforcing that the function
interpolations pass through all n nodes within the support domain. To square the
system of equations, an extra m equations are required. This is ensured by the m
conditions for (34), viz,

n

∑
i=1

ai p j(xi) = 0, j = 1, . . . ,m (35)

In this paper, the interpolations of a function at the kth point can have the form of

û(xk) =
n

∑
i=1

aiR(‖rk− ri‖,ci)+an+1xk +an+2yk +an+3, k = 1,2, . . . ,n. (36)
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The function interpolation can be expressed in a matrix form as follows:

ûe = Ga, (37)

G =




R(‖r1− r1‖,ci) · · · R(‖r1− rn‖,ci) x1 y1 1
...

. . .
...

...
...

...
R(‖rn− r1‖,ci) · · · R(‖rn− rn‖,ci) xn yn 1

x1 · · · xn 0 0 0
y1 · · · yn 0 0 0
1 · · · 1 0 0 0




(38)

ûe = [û(x1), . . . , û(xn−3),0,0,0]T, (39)

a = [a1, . . . ,an,an+1,an+2,an+3]T, (40)

Thus, the known coefficients vector is found to be

a = G−1ûe. (41)

The form of the approximation function can be obtained as follows:

û(x) = ϕa = ϕG−1ûe = ψûe (42)

ϕ = [R(‖r− r1‖,c1),R(‖r− r2‖,c2), . . . ,R(‖r− rn‖,cn),x,y,1]1×n (43)

where the matrix of shape functions can be expressed as follows

ψ = ϕG−1 = [ψ1,ψ2, . . . ,ψn,ψn+1,Ψn+2,Ψn+3]1×n+3 (44)

in which ψi(i = 1,2, . . . ,n) are shape functions for points in the support domain,
which satisfy

ψi(x j) =
{

1, j = i
0, j 6= i.

(45)

Thus, the function u(x) can be expressed as follows

u(x) =
n

∑
k=1

ψkûe
k. (46)
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4 Meshless Schemes

Consider the following partial differential equation

uk+1− r∆uk+1 = uk + r
k−1
∑
j=0

(b j+1−b j)∆uk− j

+∆t
2

[
f (uk+1,x, tk+1)+ f (uk,x, tk)

]
.

(47)

together with Dirichlet boundary condition

u(x, t) = g(x, t), on ∂Ω. (48)

Assume that there are Nd internal (domain) points and Nb boundary points.

Hence, The following Nd equations at internal domain nodes

ûk+1− r∆ûk+1 = ûk + r
k−1
∑
j=0

(b j+1−b j)∆ûk− j

+∆t
2

[
f (ûk+1,x, tk+1)+ f (ûk,x, tk)

]
.

(49)

The following Nb equations are satisfied on ∂Ω

ûk+1
i = g(xi, tk+1), i = 1,2, . . . ,Nb. (50)

where ûi are obtained by equation (46). Using the mehless shape functions given
in eq. (46), the derivatives can be writen as

∂ ûk+1(x)
∂x =

n−3
∑

k=1

∂Ψk
∂x ûe

k,
∂ 2ûk+1(x)

∂x2 =
n−3
∑

k=1

∂ 2Ψk
∂x2 ûe

k,

∂ ûk+1(x)
∂y =

n−3
∑

k=1

∂Ψk
∂y ûe

k,
∂ 2ûk+1(x)

∂y2 =
n−3
∑

k=1

∂ 2Ψk
∂y2 ûe

k.
(51)

Thus, ûk+1
i and its derivatives in equation (49) can be obtain by substituting x into

xi in equations (46) and (51)

ûk+1
i = ûk+1(xi),

∂ 2ûk+1
i

∂x2 =
∂ 2ûk+1(xi)

∂x2 ,
∂ 2ûk+1

i
∂y2 =

∂ 2ûk+1(xi)
∂y2 . (52)

5 Test Examples

In this section, we present some numerical examples to demonstate the efficiency of
our proposed algorithm. In all presented examples, we have used the multiquadric
function as

Ri(r) = (r2
i +(αcdc)2)q
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where αc = 2.0, q = 1.03 and dc is a characteristic length that is related to the nodal
spacing in the local domain of the point of interest.

To investigate the accuracy and efficiency, we introduce the following notations

εmax = max
i
|uexacti −unumi |, ε0 =

√√√√√
Nd
∑

i=1
(uexacti −unumi )2

Nd
∑

i=1
(uexacti )2

εx =

√√√√√
Nd
∑

i=1
(uexacti,x −unum

i,x )2

Nd
∑

i=1
(uexacti,x )2

, εy =

√√√√√
Nd
∑

i=1
(uexacti,y −unum

i,y )2

Nd
∑

i=1
(uexacti,y )2

(53)

where Nd is the number of internal (domain) points.

5.1 Anomalous subdiffusion equation with linear source term

As a test equation, we consider the following anomalous subdiffusion equation with
linear source term

∂u
∂ t

=0 D1−α
t ∆u(x, t)+ f (x, t), x ∈Ω⊂ R2, t > 0 (54)

u(x, t) = t2+αex+y, x ∈ ∂Ω, t > 0 (55)

u(x,0) = 0 (56)

where f (x, t) =
[
(2+α)t1+α − 2Γ(3+α)

Γ(2+2α) t
1+2α

]
ex+y.

The exact solution of (54)-(56) is u(x,y, t) = t2+αex+y.

First, the problem domain is considered with Ω = [0,1]× [0,1]. We choose n = 21×
21 collocation points all together (nx points on each horizonal line and ny points on
each vertical line). The nodes distribution of domain is shown in Fig. 1. The
proposed method is used to simulate this problem. Fig. 2 plots the computational
error for different time step. It has been found, the error decrease with the time
step.

The irregular distributed nodes are also used, as shown in Fig. 3. The computational
errors for different time steps are plotted in Fig. 4. Similar as the results presented
in Fig. 2, the computational errors decrease with time steps. In other words, a
small time step leads to a more accurate result. The influences of different are also
studied. Figs. 5, 6 and 7 plot the computational errors for α = 0.5, 0.7 and 0.9,
respectively. The maximum errors for these three different α are in the similar
order of 10−3. The above figures have proven that the newly proposed approach
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Figure 1: Regular distribution of points on Rectangular domain
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Figure 2: Errors as a function of the time step ∆t(Regular distribution shown in Fig.
1)

has very good accuracy and convergence even using irregular nodal distributions.
However, the irregular grid will lead a big difficulty for the conventional FDM.

A circular problem domain with Ω =
{
(x,y)

∣∣x2 + y2 ≤ 1
}

is also considered, and
the irregular nodal distribution is employed as shown in Fig. 8. The computational
errors for different time steps are plotted in Fig. 9. The presented approach has led
to a good convergence regarding to time steps.

In summary, the above investigations have proven that the newly proposed method
is accurate, convergent and effective for the ASDE discussed. It should be men-
tioned that the present approach is robust for irregular nodal distributions and dif-
ferent problem domains including non-rectangular problem domains, which FDM
is difficult to handle.
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Figure 3: Irregular distribution of points on Rectangular domain
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Figure 4: Errors as a function of the time step ∆t(Irregular distribution shown in
Fig. 3)

5.2 Anomalous subdiffusion equation with nonlinear source term

We consider the following anomalous subdiffusion equation with nonlinear source
term

∂u
∂ t

=0 D1−α
t ∆u(x, t)−u2 + f (x, t), x ∈Ω⊂ R2, t > 0 (57)

u(x, t) = t2+αex+y, x ∈ ∂Ω, t > 0 (58)

u(x,0) = 0 (59)

where f (x, t) =
[
(2+α)t1+α − 2Γ(3+α)

Γ(2+2α) t
1+2α + t2+4αex+y

]
ex+y.

The exact solution of (57)-(59) is u(x,y, t) = t2+αex+y.
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Figure 5: The error between the exact solution and numerical solution For Eq.(54)
at t = 1.0 where α = 0.5
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Figure 6: The error between the exact solution and numerical solution For Eq.(54)
at t = 1.0 where α = 0.7

To simulate this nonlinear ASDE, simular to the Example 5.1, the rectangular prob-
lem domain, as shown in Fig. 1, and both regular nodal distribution and irregular
nodal distributions, as shown in Fig. 1 and Fig. 3, are considered. The convergence
processes regarding to time steps are plotted in Fig. 10 and Fig. 11, respectively. It
can be found that both regular and irregular nodal distributions lead to good conver-
gences. The circular problem domain with irregular nodal distribution, as shown in
Fig. 8, is also considered. The computational errors for different time steps for this
circular problem domain governed by this nonlinear ASDE has been obtained as
plotted in Fig. 12. The distributions of computational errors for different cases are
presented in Figs. 13, 14 and 15. Very good accuracy and convergence have been
obtained.
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Figure 7: The error between the exact solution and numerical solution For Eq.(54)
at t = 1.0 where α = 0.9
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Figure 8: Irregular distribution of points on circular domain

5.3 Fisher’s equation

Let us consider the following fractional Fisher’s equation

∂u
∂ t

= K ·D1−α
0 ∆u+Au(1−u/B), (60)

u(x, t) = 0, x ∈ ∂Ω, t > 0 (61)

u(x,0) = x(1− x)+ y(1− y),(x,y) ∈Ω. (62)

where Ω = [0,1]× [0,1]. In this example, we take α = 0.5, K = 1.0, ,A =
0.25, B = 1.0.
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Figure 9: Errors as a function of the time step ∆t(Irregular distribution shown in
Fig. 8)
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Figure 10: Errors as a function of the time step ∆t(Regular distribution shown in
Fig. 1)

The rectangular problem domain discredited by irregular distributed nodes (as shown
in Fig. 3) is considered. Fig. 16 plots the results of u at t = 1.0 (time step:
∆t = 10−3 ). The conventional FDM based on the regular grid is also used to
simulate this problem. I has been found that, even using the irregular nodal dis-
tribution, the present approach leads to more accurate results than FDM (using the
regular grids).

6 Conclusion

This paper proposed an implicit meshless approach based on the radial basis func-
tions (RBF) for numerical simulation of the anomalous subdiffusion equation (ASDE),
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Figure 11: Errors as a function of the time step ∆t(Irregular distribution shown in
fig. 3)
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Figure 12: Errors as a function of the time step ∆t(Irregular distribution shown in
fig. 8)

which is a type of fractional differential equation (FDE). The discrete system of
equations is obtained by using the meshless shape functions and the strong-forms.
The stability and convergence of this meshless approach are then discussed and
theoretically proven. Several numerical examples with different problem domains
are used to validate and investigate accuracy and efficiency of the newly developed
meshless formulation. The results obtained by the meshless formulations are also
compared with those obtained by FDM in terms of their accuracy and efficiency.

The following conclusions can be drawn through the studies in this paper.

• The present implicit meshless formulation for time fractional differential
equations is un-conditionally stable.
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Figure 13: The error between the exact solution and numerical solution For Eq.(54
at t = 1.0 where α = 0.5

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

1

2

3

4

5

6

x 10
−3

x

y

T
he

 n
um

er
ic

al
 e

rr
or

 ε
(x

,y
,t=

1.
0)

Figure 14: The error between the exact solution and numerical solution For Eq.(54
at t = 1.0 where α = 0.7

• The accuracy of this present numerical approach is with the order of C∆̇t,
where C is a positive constant.

• If the same regular nodal distributions are used, the present meshless ap-
proach leads to more accurate results that FDM.

• The present meshless approach has good accuracy and convergence for ir-
regular nodal distributions and complex problem domains.

In summary, the newly developed meshless approach is accurate and convergent.
Most importantly, the present approach is robust for arbitrarily distributed nodes
and complex problem domains, for which the conventional FDM is difficult to han-
dle. Hence, the present meshless formulation is very effective for the modelling and
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Figure 15: The error between the exact solution and numerical solution For Eq.(54
at t = 1.0 where α = 0.9
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Figure 16: The numerical solution For Eq.(60) at t = 1.0 where α = 0.85

simulation of fractional differential equations, and it has good potential in develop-
ment of a robust simulation tool for problems in engineering and science which are
governed by the various types of fractional differential equations.
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Appendix A: Example of appendix

Some text here.


