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Numerical treatment of a two-dimensional
variable-order fractional nonlinear reaction-diffusion

model
F. Liu, P. Zhuang, I. Turner, V. Anh and K. Burrage

Abstract—A two-dimensional variable-order fractional non-
linear reaction-diffusion model is considered. A second-order
spatial accurate semi-implicit alternating direction method for
a two-dimensional variable-order fractional nonlinear reaction-
diffusion model is proposed. Stability and convergence of the
semi-implicit alternating direct method are established.Finally,
some numerical examples are given to support our theoretical
analysis. These numerical techniques can be used to simulate
a two-dimensional variable order fractional FitzHugh-Nagumo
model in a rectangular domain. This type of model can be
used to describe how electrical currents flow through the heart,
controlling its contractions, and are used to ascertain theeffects
of certain drugs designed to treat arrhythmia.

Index Terms—variable-order operator, alternating direction
method, second-order spacial accuracy, fractional nonlinear
reaction-diffusion model, stability and convergence.

I. I NTRODUCTION

Reaction-diffusion models have found numerous applica-
tions in patten formation in biology, chemistry, physics and
engineering (see [1]). These applications show that diffusion
can produce the spontaneous formation of spatial-temporal
patterns. The simplest reaction-diffusion model can be de-
scribed by

∂u

∂t
= K

∂2u

∂x2
+ f(u, t), (1)

whereK is a diffusion constant andf(u, t) is a nonlinear
function representing the reaction kinetics. It is interesting to
observe that forf(u) = u(1 − u), Eq. (1) reduces to the
Fisher-Kolmogorov equation. If we setf(u) = u(1 − u2), it
reduces to the real Ginsburg-Landau equation and if we set
f(u) = u(1− u)(u − a), it reduces to the FitzHugh-Nagumo
model. Herea is a model parameter.

Considerable interest in fractional differential equations has
arisen over the last decade due to their ability to model anoma-
lous transport phenomena (see [12], [13], [14]). Fractional-
order models provide an excellent instrument for describing
long memory and non-Gaussian behaviours of various pro-
cesses (see [2], [3], [4], [12]).
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A random walk with a Ĺevy distribution of jump lengths is
described on large scales by a diffusion equation with a Riesz
fractional derivative. Some space Riesz fractional diffusion
equations have been proposed and used in natural systems
including heterogeneous soils, aquifers, and rivers, where the
underlying transport phenomena are typically observed to be
non-Fickian (see [15]).

A two-dimensional space Riesz fractional diffusion equation
with a nonlinear reaction term (2D-RSFDE-NRT) has been
considered in [17], [18], [19]:

∂u

∂t
= Kx

∂αu

∂|x|α
+Ky

∂αu

∂|y|α
+ f(u, x, y, t), (2)

where ∂αu
∂|x|α is a space Riesz fractional operator (see [16]), is

defined for a finite domain [a,b] as

∂αu

∂|x|α
= cα(

∂αu

∂xα
+

∂αu

∂(−x)α
),

∂αu(x, y, t)

∂xα
=

1

Γ(2− α)

∂2

∂x2

∫ x

a

u(ξ, y, t)dξ
(x− ξ)α−1

,

∂αu(x, y, t)

∂(−x)α
=

(−1)2

Γ(2− α)

∂2

∂x2

∫ b

x

u(ξ, y, t)dξ
(ξ − x)α−1

1 < α ≤ 2, Kx,Ky are diffusion coefficients,cα = −1
2 cos(πα

2 ) .
Underlying this description is the assumption of zero Dirichlet
boundary conditions.

Similarly, the space Riesz fractional derivative∂
αu

∂|y|α of
order α is defined with respect toy for a finite domain
[c,d]. The fractional reaction diffusion equation based onthe
fractional Laplacian has also been considered in [29].

In various recent applications in science and engineering,
variable-order fractional partial differential equations have
been studied [5], [20], [21]. In order to motivate the use
of variable fractional order operators, a little more we fours
on several examples. Glockle and Nonnenmacher [6] studied
the relaxation processes and reaction kinetics of proteinsthat
are described by fractional differential equations of order α.
The orderα was found to have a temperature dependence.
Electroviscous or electrorheo-logical fluids [7] and polymer
gels [8] are known to change their properties in response
to changes in imposed electric field strength. The properties
of magnetorheological elastomers respond to magnetic field
strength [9]. From the field of damage modelling, it is noted
that as the damage accumulates (with time) in a structure, the
nonlinear stress/strain behavior changes. This behavior may be
better described with variable-order calculus.



2

One of the most fundamental problems in cardiac science
is understanding the electrophysiological activity of theheart,
and, in particular understanding the mechanisms that can
induce arrhythmias with system biology approaches [10] in-
creasingly used. It is known that the myocardium has a laminar
fibrous structure, with cardiac cell being arranged into fibres,
which are then arranged into branching networks of sheets,
separated by collagen and extracellular pores [11]. While
the bidomain models can capture the anisotropic structure
of cardiac microstructure through the conductivity tensors, it
cannot capture the heterogeneous nature of the extracellular
region, nor deal with the fact that ventricular tissue structure
can be very different from one region to another. In addition,
the nature of these heterogeneities seem to change significantly
due to the ageing of the heart. Bueno-Orovio et al. [30] have
developed a new approach to the bidomain model in which the
Laplacian operator is replaced by the fractional Laplacianand
show that this approach better explains many experimental and
observational electrophysiological real data. Thus we propose
a fundamental rethink of the variable-order fractional model in
which we capture the spatia heterogeneities in the extrarellular
domain through the use of fractional derivatives. Finally,
we note that Cusimano et al. [17] have developed variable
order fractional operator to describe cell movement in the
development of the neural crest.

Numerical methods for the variable-order model are stil-
l incipient. Lin et al. established an equality between the
variable-order Riemann–Liouville fractional derivativeand its
Grünwald–Letnikov expansion (see [22]. Using this relation-
ship, they proposed an explicit finite difference approxima-
tion scheme for a one-dimensional variable-order fractional
nonlinear reaction-diffusion equation. The convergence and
stability of this approximation are proved. Zhuang et al.
[23] presented explicit and implicit Euler approximationsfor
one-dimensional variable-order fractional advection-diffusion
equation with a nonlinear source term on a finite domain.
Stability and convergence of the methods are discussed. They
also investigated a fractional method of lines, a matrix transfer
technique, and an extrapolation method for the equation.

In this paper a new two-dimensional variable-order frac-
tional nonlinear reaction-diffusion model (2D-VOFNRDM) is
considered:

∂u

∂t
= Kx

∂α(x,y)u

∂|x|α(x,y)
+Ky

∂α(x,y)u

∂|y|α(x,y)
+ f(u, x, y, t), (3)

with initial condition:

u(x, y, 0) = ψ(x, y), a ≤ x ≤ b, c ≤ y ≤ d, (4)

and zero Dirichlet boundary conditions:

u(a, y, t) = 0; u(b, y, t) = 0, (5)

u(x, c, t) = 0; u(x, d, t) = 0, (6)

where1 < α(x, y) ≤ 2,Kx,Ky are diffusion coefficients. The
nonlinear source termf(u, x, y, t) is assumed to be locally
Lipschitz continuous. The space Riesz fractional operator
∂α(x,y)u
∂|x|α(x,y) on a rectangular domain[a, b]× [c, d] is defined as

(see [23]):

∂α(x,y)u

∂|x|α(x,y)
= cα(x,y)(

∂α(x,y)u

∂xα(x,y)
+

∂α(x,y)u

∂(−x)α(x,y)
),

wherecα(x,y) =
−1

2 cos(
πα(x,y)

2 )
, 1 < α(x, y) ≤ 2, and

∂α(x,y)u(x, y, t)

∂xα(x,y)

=

[
1

Γ(2− α(x, y))

∂2

∂ξ2

∫ ξ

a

u(η, y, t)dη

(ξ − η)α(x,y)−1

]

ξ=x

, (7)

∂α(x,y)u(x, y, t)

∂(−x)α(x,y)

=

[
(−1)2

Γ(2− α(x, y))

∂2

∂ξ2

∫ b

ξ

u(η, y, t)dη

(η − ξ)α(x,y)−1

]

ξ=x

. (8)

Similarly, we can define the space Riesz fractional derivative
∂α(x,y)u
∂|y|α(x,y) of orderα(x, y) with respect toy.

Remark: We say thatf : X → X is globally Lipschitz
continuous if for someL > 0, we have‖f(u)− f(v)‖ ≤
L ‖u− v‖ for all u, v ∈ X , and is locally Lipschitz continu-
ous, if the latter holds for‖u‖ , ‖v‖ ≤M with L = L(M) for
anyM > 0 (see [24], [25]).

The remainder of this article is organized as follows. In
Section 2, a spatially second-order accurate semi-implicit al-
ternating direction method (SIADE) for the (2D-VOFNRDM)
in a square domain is proposed. The stability and convergence
of the SIADE in a square domain are discussed in Section
3. Finally, some numerical results are presented and these
techniques are also used to simulate a two-dimensional vari-
able order fractional FitzHugh-Nagumo model in a rectangular
domain.

II. SEMI-IMPLICIT ALTERNATING DIRECTION METHOD

We consider the numerical approximation of Eq. (3) in
a rectangular domain. Lethx = (b − a)/m1 and hy =
(d − c)/m2 be the spatial grid size in thex-direction and
in the y-direction, respectively;τ = T/n be the time step;
xi = a+ihx, i = 0, 1, · · · ,m1; yj = c+jhy, j = 0, 1, · · · ,m2;
tk = kτ, k = 0, 1, · · · , n. Define uki,j as the numerical
approximation tou(xi, yj, tk). The initial conditions are set
by u0i,j = ψ(xi, yj).

Firstly, we use the backward Euler difference scheme for
the first order time derivative

∂u

∂t

∣∣
(xi,yj ,tk)

≃
uki,j − uk−1

i,j

τ
+O(τ). (9)

Secondly, adopting the fractional centered difference scheme
(see [26], [28]), we can discretize the Riesz fractional deriva-
tive as

∂α(xi,yj)

∂|x|α(xi,yj)
u(xi, yj , tk)

≃ −
1

h
α(xi,yj)
x

i∑

p=−m1+i

gp
α(xi,yj)

u(xi−p, yj , tk) +O(h2x),
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where the coefficientsgp
α(xi,yj)

are defined by

gp
α(xi,yj)

= gpαi,j

=
(−1)pΓ(αi,j + 1)

Γ(
αi,j

2 − p+ 1)Γ(
αi,j

2 + p+ 1)
, p = 0,∓1,∓2, · · · .

Similarly,

∂α(xi,yj)

∂|y|α(xi,yj)
u(xi, yj , tk)

= −
1

h
α(xi,yj)
y

j∑

q=−m2+j

gq
α(xi,yj)

u(xi, yj−q, tk) +O(h2y).

Lemma 1. (see [26], [28]) For all non-negativei, j, the
coefficientsgpαi,j

p = 0,∓1,∓2, · · · satisfy:
(1) g0αi,j

≥ 0, gkαi,j
= g−k

αi,j
≤ 0 for all |k| ≥ 1;

(2)
∞∑

p=−∞
gpαi,j

= 0;

(3) For any positive integersn,m with n < m, we have
n∑

p=−m+n

gpαi,j
> 0.

The nonlinear source term can be treated either explicitly
or implicitly. In this paper, we use an explicit method and
evaluate the nonlinear source term at the previous time step:

f(u(xi, yj, tk), xi, yj , tk)
= f(u(xi, yj , tk−1), xi, yj , tk−1) +O(τ).

(10)

Therefore the semi-implicit numerical method for the 2D-
VOFNRDM is determined by the following finite difference
equation:

uki,j − uk−1
i,j

τ
= −

Kx

h
αi,j

x

i∑

p=−m1+i

gpαi,j
uki−p,j

−
Ky

h
αi,j

y

j∑

q=−m2+j

gqαi,j
uki,j−q + f(uk−1

i,j , xi, yj , tk−1). (11)

The semi-implicit numerical method defined by (11) is
consistent with orderO(τ + h2x + h2y).

Define the following fractional partial difference operators:

δαi,j

x uki,j = −
Kx

h
αi,j

x

i∑

p=−m1+i

gpαi,j
uki−p,j ,

δαi,j
y uki,j = −

Ky

h
αi,j

y

j∑

q=−m2+j

gqαi,j
uki,j−q.

With these operator definitions, the semi-implicit Euler
method for the 2D-VOFNRDM with homogeneous Dirichlet
boundary conditions may be written in the following operator
form:

(1− τδαi,j
x − τδαi,j

y )uki,j = uk−1
i,j + τfk−1

i,j (u), (12)

1 ≤ i ≤ m1 − 1, 1 ≤ j ≤ m2 − 1,

wherefk−1
i,j (u) = f(uk−1

i,j , xi, yj , tk−1).
We introduce an additional perturbation error equal to

(τ)2
(
δ
αi,j

x δ
αi,j

y

)
uki,j . Eq. (12) is written in the following

directional separation product form:

(1− τδαi,j
x )

(
1− τδαi,j

y

)
uki,j = uk−1

i,j + τfk−1
i,j (u). (13)

Here we have dropped theτ2 term on the right in Eq. (13).
The additional perturbation error is not large compared to
the approximation errors for the other terms in (12), and
hence (13), which is called a semi-implicit alternating direction
method (SIADM), is consistent with orderO(τ + h2x + h2y).

Computationally, the SIADM defined by (13) can now be
solved by the following iterative scheme. At timetk:

Step 1:Solve the problem in thex-direction (for each fixed
yj) to obtain an intermediate solutionu∗i,j in the form

(1− τδαi,j

x ))u∗i,j = uk−1
i,j + τfk−1

i,j (u). (14)

Step 2: Then solve in they-direction (for each fixedxi)
(
1− τδαi,j

y

)
)uki,j = u∗i,j . (15)

The initial and boundary conditions for the numerical so-
lution uki,j and uk−1

i,j are defined from the given initial and
boundary conditions. Prior to carrying out step one of solving
(14), the boundary conditions for the intermediate solution u∗i,j
should be set from Eq. (15) (which incorporates the values of
uki,j at the boundary), otherwise the order of convergence will
be adversely affected. Specifically, for homogeneous Dirichlet
boundary conditions (5) and (6), we have

uk0,j = u(a, yj , tk) = 0; ukm1,j
= u(b, yj, tk) = 0;

uki,0 = u(xi, c, tk) = 0; uki,m2
= u(xi, d, tk) = 0.

Thus, we compute the boundary values foru∗ from

u∗0,j =
(
1− τδαi,j

y

)
uk0,j , u∗m1,j

=
(
1− τδαi,j

y

)
ukm1,j

.

III. STABILITY AND CONVERGENCE

In this section, we discuss the stability and convergence of
the SIADM (13). We first need to rewrite (14), (15) and (13)
in matrix form.

Let
rxi,j =

τKx

(hx)αi,j
, ryi,j =

τKy

(hy)αi,j
.

Then Eq. (14) may be written as

A(v)V ∗
v = V k−1

v + τF k−1
v , v = 1, 2, · · · ,m2 − 1, (16)

where V k−1
v = (uk−1

1,v , u
k−1
2,v , · · · , u

k−1
m1−1,v)

T , V ∗
v =

(u∗1,v, u
∗
2,v, · · · , u

∗
m1−1,v)

T ,

F (k−1)
v = (fk−1

1,v (u), fk−1
2,v (u), · · · , fk−1

m1−1,v(u))
T ,

andA(v) = (a
(v)
i,j )(m1−1)×(m1−1),

a
(v)
i,j =






rxi,vg
i−j
αi,v

, for j < i;

1 + rxi,vg
0
αi,v

, for j = i;

rxi,vg
−j+i
αi,v

, for j > i.
(17)

Similarly, Eq. (15) may be written as

B(w)W̄ k
w = W̄ ∗

w, w = 1, 2, · · · ,m1 − 1, (18)

where W̄ k
w = (ukw,1, u

k
w,2, · · · , u

k
w,m2−1)

T , W̄ ∗
w =

(u∗w,1, u
∗
w,2, · · · , u

∗
w,m2−1)

T , B(w) = (b
(w)
i,j )(M2−1)×(m2−1),

b
(w)
i,j =





ryw,jg
i−j
αw,j

, for j < i;

1 + ryw,jg
0
αw,j

, for j = i;

ryw,jg
−j+i
αw,j

, for j > i.
(19)
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Hence, Eq. (13) may be written in the matrix form

SHUk = Uk−1 + F k−1, (20)

where the matricesS and H represent the operators(
1− τδ

αi,j

x

)
and

(
1− τδ

αi,j

y

)
, respectively,

Uk =
[
uk1,1, · · · , u

k
m1−1,1, u

k
1,2, · · · , u

k
m1−1,2,

· · · , uk1,m2−1, · · · , u
k
m1−1,m2−1

]T

and the vectorF k−1 is the source term.
The matrixS is a block diagonal matrix of the formS =

diag(A(1), A(2), · · · , A(m2−1)), where each block is of size
m1 − 1.. Similarly, the matrixH is a block matrix of(m2 −

1) × (m2 − 1) blocks are such thatH(w)
i,j is an (m1 − 1) ×

(m1 − 1) matrix, whereH(w)
i,j is a diagonal matrixH(w)

i,j =

diag(b
(w)
i,j , b

(w)
i,j , · · · , b

(w)
i,j ), and where the notationb(w)

i,j refers
to the(i, j)th entry of the matrixB(w) defined previously.

To prove the stability and convergence of the numerical
method, we need the following lemma from [27].

Lemma 2. Let X = [x1, x2, · · · , xm]T and ‖X‖∞ =
max

1≤i≤m
|xi|. If the matrix D = (di,j)m×m satisfies the con-

ditions
m∑

j=1,j 6=i

|di,j | ≤ |di,i| − 1, (i = 1, 2, · · · ,m), (21)

then
‖X‖∞ ≤ ‖DX‖∞. (22)

Let uki,j and ũki,j be the numerical and approximate so-
lutions of the SIADM (13), respectively, and setEn =
[εk1,1, ε

k
2,1, · · · , ε

k
m1−1,m2−1]

T , whereεki,j = uki,j − ũki,j , and
let f̃k

i,j(u) be the approximation offk
i,j(u).

Theorem 1.The SIADM defined by (13) is unconditionally
stable, and there is a positive constantC∗

1 such that

‖Ek‖∞ ≤ C∗
1‖E

0‖∞, k = 0, 1, 2, · · · .

Proof. Let F̄ k−1
i,j = fk−1

i,j (u) − f̃k−1
i,j (u), then the errorEk

satisfies the following equation:

SHE
k = E

k−1 + F̄ k−1, (23)

whereF̄ k =
[
F̄ k
1,1(u), · · · , F̄

k
M1−1,M2−1(u)

]T
.

From Lemma 1, we havea(v)i,i > 0, a
(v)
i,j < 0 (i 6= j).

Therefore
M1−1∑

j=1,j 6=i

|a
(v)
i,j | =

i−1∑

p=−m1+i+1

|rxi,vg
p
αi,j

|

= −

i−1∑

p=−m1+i+1

rxi,vg
p
αi,j

< rxi,vg
0
αi,j

= |a
(v)
i,i | − 1.

Similarly, we have

m2−1∑

j=1,j 6=i

|b
(w)
i,j | < |b

(w)
i,i | − 1.

ThereforeA(v) andB(w) satisfy the conditions of Lemma 2.

Since f(u, x, y, t) is locally Lipschitz continuous, then
‖fk−1

i,j (u) − f̃k−1
i,j (u)‖∞ ≤ Lk‖ε

k−1
i,j ‖∞, i.e., ‖F̃ k−1‖∞ ≤

Lk‖E
k−1‖∞.

As A(v) andB(w) satisfy the conditions of Lemma 2, then
according to the relationship between the matricesS andA(v)

and the relationship between the matricesH andB(v), we
see thatS andH also satisfy the conditions of Lemma 2.
Therefore

‖Ek‖∞ ≤ ‖HE
k‖∞ ≤ ‖SHE

k‖∞

≤ ‖Ek−1‖∞ + τLk‖E
k−1‖∞

≤ (1 + τL)k‖E0‖∞

≤ C∗
1‖E

0‖∞,

whereL = max
1≤l≤k

Ll andC∗
1 = eLT .

Now let us consider the convergence of the SIADM defined
by (15). Let u(xi, yj, tk) be the exact solution of the 2D-
VOFNRDM (3)-(5),uki,j be the numerical solution of SIADM
defined by (13). Letηki,j = u(xi, yj , tk) − uki,j and Y

n =

[ηk1,1, η
k
2,1, · · · , η

k
m1−1,m2−1]

T .
Theorem 2. The SIADM as defined by (13) is convergent

and there is a positive constantC∗
2 such that

‖Yk‖∞ ≤ C∗
2 (τ + h2x + h2y), k = 0, 1, 2, · · · .

Proof.
The errorYk satisfies the following equation:

SHY
k = Y

k−1 + τF̄ k−1 + τR̄k, (24)

where‖F̄ k−1‖∞ ≤ LkY
k−1 and‖R̄k‖∞ ≤ C2(τ +h

2
x+h

2
y).

Similar to the proof of Theorem 1, we have

‖Yk‖∞ ≤ ‖HY
k‖∞ ≤ ‖SHY

k‖∞

≤ ‖Yk−1‖∞ + τ‖R̄k‖∞ + τLk‖Y
k−1‖∞

≤ (1 + τL)‖Yk−1‖∞ + τC2(τ + h2x + h2y).

Using the discrete Gronwall inequality, we obtain

‖Yk‖∞ ≤ C2kτe
Lkτ (τ + h2x + h2y)

≤ C2Te
LT (τ + h2x + h2y)

= C∗
2 (τ + h2x + h2y).

Therefore the SIADM defined by (13) is convergent.

IV. N UMERICAL RESULTS

In this section, two numerical examples are presented to
evaluate our theoretical analysis from Section III.

Example 1.Consider the following variable-order fractional
nonlinear reaction-diffusion

∂u
∂t

= 1.5 ∂α(x,y)u
∂|x|α(x,y) + 1.5 ∂α(x,y)u

∂|y|α(x,y) + u− u3 + f(x, y, t),

t > 0, 0 < x, y < 1

u(0, y, t) = u(1, y, t) = 0, 0 ≤ y ≤ 1, t ≥ 0,

u(x, 0, t) = u(x, 1, t) = 0, 0 ≤ x ≤ 1, t ≥ 0,

u(x, y, 0) = x2(1− x)2y2(1 − y)2, 0 ≤ x, y ≤ 1

(25)
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where

f(x, y, t) = e3tx6(1− x)6y6(1− y)6

+g1(x, y)
[
x2−α(x,y)f1(x, y) + (1− x)α(x,y)f2(x, y)

]

+g2(x, y)
[
y2−α(x,y)f3(x, y) + (1− y)α(x,y)f4(x, y)

]
,

g1(x, y) = ety2(1−y)2

Γ(3−α(x,y)) cos
πα(x,y)

2

,

g2(x, y) = etx2(1−x)2

Γ(3−α(x,y)) cos
πα(x,y)

2

,

f1(x, y) = 1− 6x
3−α(x,y) −

12x2

(3−α(x,y))(4−α(x,y)) ,

f2(x, y) = 1− 6(1−x)
3−α(x,y) −

12(1−x)2

(3−α(x,y))(4−α(x,y)) ,

f3(x, y) = 1− 6y
3−α(x,y) −

12y2

(3−α(x,y))(4−α(x,y)) ,

f4(x, y) = 1− 6(1−y)
3−α(x,y) −

12(1−y)2

(3−α(x,y))(4−α(x,y)) ,

α(x, y) = 1 + sin2 πxy.

The exact solution of (25) isu(x, y, t) = et(x − x2)2(y −
y2)2.

TABLE I
FOR τ = h2 , THE ERROR BETWEEN THE EXACT SOLUTION AND THE

NUMERICAL SOLUTION AT t = 1.0

h max
1≤i,j≤m−1

|un
i,j

− u(xi, yj , tn)| Rate of Convergence

1/5 7.711E-004
1/10 2.542E-004 1.601≈ 10/5
1/20 7.366E-005 1.787≈ 20/10
1/40 1.934E-005 1.929≈ 40/20

Table 1 shows the maximum error between the exact so-
lution and the numerical solution obtained by the SIADM in
Example 1 at timet = 1. From the above results, it can be
seen that the numerical results are in good agreement with the
theoretical results.

These numerical techniques are now employed to simu-
late the two-dimensional variable order fractional FitzHugh-
Nagumo model in a square domain.

Example 2 Consider the following two-dimensional vari-
able order fractional FitzHugh-Nagumo model in a square
domainΩS : 0 ≤ x, y ≤ 2.5:

∂u

∂t
= Kx

∂α(x,y)u

∂|x|α(x,y)
+Ky

∂α(x,y)u

∂|y|α(x,y)

+u(1− u)(u− σ)− v,

∂v

∂t
= ǫ(βu− γv − δ),

whereu is a normalized transmembrane potential andv is a
dimensionless time-dependent recovery variable;Kx andKy

are the diffusion coefficients. We consider the following choice
of model parameters,σ = 0.1, ǫ = 0.01, β = 0.5, γ =
1, δ = 0, which is known to generate stable patterns in
the system in the form of reentrant spiral waves. The model
parameters have been taken from [29].

In this simulation, we consider the initial conditions as

u(x, y, 0) =





1.0, 0 < x ≤ 1.25, 0 < y < 1.25,
0.0, 1.25 ≤ x < 2.5, 0 < y < 1.25,
0.0, 0 < x < 2.5, 1.25 ≤ y < 2.5

v(x, y, 0) =

{
0.0, 0 < x ≤ 2.5, 0 < y < 1.25,
0.1, 1.25 ≤ x < 2.5, 0 < y < 2.5

with homogeneous Dirichlet boundary conditions

u(0, y, t) = u(2.5, y, t) = 0, 0 ≤ y ≤ 2.5, t ≥ 0,
u(x, 0, t) = u(x, 2.5, t) = 0, 0 ≤ x ≤ 2.5, t ≥ 0.

In this simulation, we takehx = hy = 2.5/256 andτ = 0.1.
The contour of the stable rotating solution in the FitzHugh-
Nagumo model (i.e.,α = 2) is shown in Figure 1(a), and
the contours of the stable rotating solution in the fractional
FitzHugh-Nagumo model (α = 1.8 andα = 1.6) are shown
in Figure 1(b) and 1(c), respectively. From this simulation, it
can be seen that spiral waves in the space Riesz fractional
FitzHugh-Nagumo model generate a curve and rotate clock-
wise as observed in [29]. From Figures 1(a)-1(c), we find
that as expected, the wave travels more slowly as fractional
orderα decreases. The behaviour of the solution is particularly
interesting for the caseα(x, y) = 1.5 + 0.5 sin 2πx

5 sin 2πy
5 .

The contour of the stable rotating solution is shown in Figure
1(d), where we observe that the model describes a smooth and
continuous transition in the considered domain.

V. CONCLUSIONS

In this paper, a novel semi-implicit alternating direction
method is proposed for approximating a new two-dimensional
variable-order fractional nonlinear reaction-diffusionmodel
subject to homogeneous Dirichlet boundary conditions in a
rectangular domain. Stability and convergence of the method
have been established. These techniques are also used for sim-
ulating a two-dimensional variable-order fractional FitzHugh-
Nagumo model in a rectangular domain. The numerical re-
sults demonstrate the effectiveness of these techniques. The
variable-order models can be used to capture complex spatial
dynamics in heterogeneous media. We plan to apply this new
approach to cardiac electrophysiology in any irregular domain
in our future work.
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