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Numerical treatment of a two-dimensional

variable-order fractional

nonlinear reaction-diffusior

model

F. Liu, P. Zhuang, I. Turner, V. Anh and K. Burrage

Abstract—A two-dimensional variable-order fractional non-
linear reaction-diffusion model is considered. A second+der
spatial accurate semi-implicit alternating direction method for
a two-dimensional variable-order fractional nonlinear reaction-
diffusion model is proposed. Stability and convergence ofhie
semi-implicit alternating direct method are established.Finally,
some numerical examples are given to support our theoretida
analysis. These numerical techniques can be used to simutat
a two-dimensional variable order fractional FitzHugh-Nagumo
model in a rectangular domain. This type of model can be
used to describe how electrical currents flow through the hed,
controlling its contractions, and are used to ascertain theeffects
of certain drugs designed to treat arrhythmia.

Index Terms—variable-order operator, alternating direction
method, second-order spacial accuracy, fractional nonliear
reaction-diffusion model, stability and convergence.

|. INTRODUCTION

Reaction-diffusion models have found numerous applica-
tions in patten formation in biology, chemistry, physicsdan
engineering (see [1]). These applications show that ddfus
can produce the spontaneous formation of spatial-temporal
patterns. The simplest reaction-diffusion model can be de-

scribed by )
ou 0°u
— =K— t 1
a7 = K5 + f(w.), 1)

where K is a diffusion constant andgf(u,t) is a nonlinear

function representing the reaction kinetics. It is intéresto

observe that forf(u) = u(1 — ), Eq. (1) reduces to the

Fisher-Kolmogorov equation. If we sgt(u) = u(1 — u?), it

reduces to the real Ginsburg-Landau equation and if we $gf
f(u) = u(l —u)(u — a), it reduces to the FitzHugh-Nagumo

model. Hereq is a model parameter.
Considerable interest in fractional differential equatidnas

A random walk with a lévy distribution of jump lengths is
described on large scales by a diffusion equation with azRies
fractional derivative. Some space Riesz fractional diffns
equations have been proposed and used in natural systems
including heterogeneous soils, aquifers, and rivers, aiiee
underlying transport phenomena are typically observedeto b
non-Fickian (see [15]).

A two-dimensional space Riesz fractional diffusion ecorati
with a nonlinear reaction term (2D-RSFDE-NRT) has been
considered in [17], [18], [19]:

ou 0%u 0%

u
— =K, K 2
o~ g Mg T Ienn @
Where(i?;—li is a space Riesz fractional operator (see [16]), is
defined for a finite domain [a,b] as
0%u . (@ 0%u )
Ozl "0z (—mx)>”’
u(z,y,t) 1 /"L u(&,y, t)de
O  T2-a)02? ), (z—&o 1
Ou(z,y,t) (=1 9% /b u(g, y, t)de
O(—x)e I'2—aw)oz? ), (§—z)*!

1 <a<2, K,, K, are diffusion coefficients;, = ﬁ(lﬂ_a)

Underlying this description is the assumption of zero DDikect
boundary conditions.

Similarly, the space Riesz fractional derivati :‘“a of
order o is defined with respect tg; for a finite domain
[c,d]. The fractional reaction diffusion equation basedtioa
ctional Laplacian has also been considered in [29].

In various recent applications in science and engineering,
variable-order fractional partial differential equatsoave
been studied [5], [20], [21]. In order to motivate the use

arisen over the last decade due to their ability to model @omyf \ariaple fractional order operators, a little more werfou
lous transport phenomena (see [12], [13], [14]). Fractiong,n several examples. Glockle and Nonnenmacher [6] studied
order models provide an excellent instrument for descgbifne rejaxation processes and reaction kinetics of protéias
long memory and non-Gaussian behaviours of various prgr described by fractional differential equations of orde

cesses (see [2], [3], [4], [12]).
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The ordera was found to have a temperature dependence.
Electroviscous or electrorheo-logical fluids [7] and pogm
gels [8] are known to change their properties in response
to changes in imposed electric field strength. The propertie
of magnetorheological elastomers respond to magnetic field
strength [9]. From the field of damage modelling, it is noted
that as the damage accumulates (with time) in a structuee, th
nonlinear stress/strain behavior changes. This behaagrira
better described with variable-order calculus.



One of the most fundamental problems in cardiac sciensee [23)]):
is understanding the electrophysiological activity of treart,
and, in particular understanding the mechanisms that can
induce arrhythmias with system biology approaches [10] in-
creasingly used. It is known that the myocardium has a lami
fibrous structure, with cardiac cell being arranged intoef#hr
which are then arranged into branching networks of sheets,
separated by collagen and extracellular pores [11]. While

5‘a(x,y)u - aa(az,y)u aa(z’y)u
W - C‘X("Cy)(ama(xy) + 8(—x)(¥(i,y) ,

r\ﬁhereca(w) =——1_——1<a(zr,y) <2, and

2 cos(—”a(;’y) ) !

5‘0‘(I’y)u(:c, Y, t)

the bidomain models can capture the anisotropic structure Oxe(@y) -

of cardiac microstructure through the conductivity tessadr B 1 9 / S u(n,y,t)dn )
cannot capture the heterogeneous nature of the extraellul | T2 - a(z,y) 0¢2 J, (&€ —n)@y-1 ’
region, nor deal with the fact that ventricular tissue stie a('x ) e
can be very different from one region to another. In addijtion 9"V u(@, y, t)

the nature of these heterogeneities seem to change sigtlifica O(—w)()

due to the ageing of the heart. Bueno-Orovio et al. [30] have [ (—1)2 92 b u(n,y,t)dn |
developed a new approach to the bidomain model in which the - ma—gg /f W -(8)
Laplacian operator is replaced by the fractional Laplaciad - S &=a

show that this approach better explains many experimental asimilarly, we can define the space Riesz fractional dexreati
observational elect_rophysmloglc;al real data. Th_us weppse aa\:\(;i% of ordera(z,y) with respect toy.

aft_mdamental rethink of the vanable-ord_gr frgctmnal rlod Remark: We say thatf : X — X is globally Lipschitz
which we capture the spatia heterogeneities in the extuéael

) < L .~ continuous if for someL > 0, we have| f(u) — f(v)|| <
domain through the use of fractional derivatives. Fmallyj@”u_vH for all u,v € X, and is locally Lipschitz continu-

we note that Cusimano et al. [17] have developed vgriatgvas’ if the latter holds fofiu|| , ||| < M with L = L(M) for
order fractional operator to describe cell movement in théfhyM > 0 (see [24], [25]).

development of the neural crest. . . The remainder of this article is organized as follows. In
Numerical methods for the variable-order model are stiseqtion 2 4 spatially second-order accurate semi-inpiei
| incipient. Lin et al. established an equality between thl%rnating direction method (SIADE) for the (2D-VOFNRDM)

variable-order Riemann—Liouville fractional derivatigad its ;, 5 square domain is proposed. The stability and conveegenc
Grunwald-Letnikov expansion (see [22]. Using this relati ¢ 1o 5)ADE in a square domain are discussed in Section

ship, they proposed an explicit finite difference approXima - gina)ly some numerical results are presented and these
tion scheme for a one-dimensional variable-order fraefiong niques are also used to simulate a two-dimensional vari

nonlinear reaction-diffusion equation. The convergenoe e order fractional FitzHugh-Nagumo model in a rectaagul
stability of this approximation are proved. Zhuang et aﬁomain.

[23] presented explicit and implicit Euler approximaticios
one-dimensional variable-order fractional advectioffiudion
equation with a nonlinear source term on a finite domain. !l. SEMI-IMPLICIT ALTERNATING DIRECTION METHOD

Stability and convergence of the methods are discussed. The\wa consider the numerical approximation of Eq. (3) in
also investigated a fractional method of lines, a matrirdfar rectangular domain. Lek, = (b — a)/m, and h, =
. : = y =

techniq.ue, and an extrapolatign melthod for t.he equation. (d — ¢)/m» be the spatial grid size in the-direction and

In this paper a new two-dimensional variable-order fragy ihe y-direction, respectivelyr = T/n be the time step;
tional nonlinear reaction-diffusion model (2D-VOFNRDM) i @i = atihg,i=0,1, - ,m1;y; = c+jhy,j = 0,1, -, ma;
considered: tr, = kr,k = 0,1,---,n. Define uf; as the numerical

ou oY)y, o(z.y)y, approximation tou(z;, y;,tx). The initial conditions are set

- = - [ 0 _

ot Ia|x|°‘(£y) + Ky 8|y|o‘(*7y) + f(ua T, y7t>a (3) by Qi,j = w(l‘i,yj). .

Firstly, we use the backward Euler difference scheme for

with initial condition: the first order time derivative
k k—1
u(z,y,0) =v(z,y), a<xz<b c<y<d, (4 Ou L Uiy T Ui
ot |(:Ei,yj,tk) - T + O(T) (9)
and zero Dirichlet boundary conditions: . . :

y Secondly, adopting the fractional centered differencesisth
ula,y,t) = 0; (b, y,t) =0, (5) (see [26], [28]), we can discretize the Riesz fractionalwder
u(w,e,t) = 0; ul,d,t) =0, 6 ™eas

aa(xi,yj)
wherel < a(z,y) < 2, K,, K, are diffusion coefficients. The WU(% Yistk)
nonlinear source ternf(u,z,y,t) is assumed to be locally ;
Lipschitz continuous. The space Riesz fractional operator 1 P 2
a(z,y . . . = T Go(ws g ) U \Li— ay'vtk +tha
% on a rectangular domaifa, b] x [c, d] is defined as po(@ivi) p}%;lH (@i:9) (imp: 43 tr) ()



where the coeﬁicientgi(zi y;) are defined by Here we have dropped the? term on the right in Eq. (13).
The additional perturbation error is not large compared to

gg(a:i,yj) zgé’i,j the approximation errors for the other terms in (12), and
B (—1)PT(ev; ; + 1) 0%l 79 ... hence (13), which is called a semi-implicit alternatingediion
TS p+ )T +p+1) PT U THTETT method (SIADM), is consistent with ordeéd(r + h2 + h2).
Similarly Computationally, t_he _SIAD_M defined by (13) can now be
' solved by the following iterative scheme. At timg:
9o(wiy;) Step 1:Solve the problem in the-direction (for each fixed
Bly[o@ews) yuli yis ) y;) to obtain an intermediate solutiar ; in the form
1 J 177—50“] 71/?_,1 T .k,_l u).
— _W Z gi(w“yj)u(xivyj—q;tk)+O(hg2/)- ( )) @, -’L7J + fz,] ( ) . (14)
y q=—ma+j Step 2: Then solve in they-direction (for each fixed:;)
Lemma 1. (see [26], [28]) For all non-negative j, the (1 — 7603 ) )uk . = uj ;. (15)
coefﬂmenthCY =0,¥F1,F2,- - satisfy: o . o .
Q)¢ > 0 ga _ gak <0 for all |k| > 1; The initial and boundary _condltlons for thle nurn_e_ncal So-
o lution } ; and ufj ! are defined from the given initial and
(2) Z 9o, ; = 0 boundarS/ conditions. Prior to carrying out step one of swvi

(14), the boundary conditions for the intermediate sotutip;

should be set from Eq. (15) (which incorporates the values of

p_;nw Gai; > O- uk ; at the boundary), otherwise the order of convergence will
The nonlinear source term can be treated either expllcnhge adversely affected. Specifically, for homogeneous Blietc

or implicitly. In this paper, we use an explicit method andoundary conditions (5) and (6), we have

(3) For a any positive integera, m with n < m, we have

evaluate the nonlinear source term at the previous time ste
P P U;g’j :U’(aayj7tk) 207 U’fnl,j :U’(bay_]atk) 207
f(u(xi7yj7tk)7xi7yj,tk) (10) ufO - U(Ziacvtk) :07 ufmz = u(xiadatk) =0.

= f(u(xi, yj, th—1), Ti, Yj, tg—1) + O(7).

Therefore the semi-implicit numerical method for the 2D- Thus, we compute the boundary values forfrom

VOFNRDM is determined by the following finite difference v ; = (L=760a)uf;,  uk, o= (1—7000)ub, .
equation:
& yh1 K i IIl. STABILITY AND CONVERGENCE
uy o —ul .
nl = —hafj >oghoub In this section, we discuss the stability and convergence of
4 T p——miti the SIADM (13). We first need to rewrite (14), (15) and (13)
K j in matrix form.
- hagj Z gg(iwjui‘c,j—q + f(uijl, TiyYj, tkfl)' (11) Let K K.
Yo g=—matj ¢ T L Y

"id T e 0T (e
The semi-implicit numerical method defined by (11) is i Y
consistent with orde©(r + h2 + h2). Then Eq. (14) may be written as

Define the following fractional partial difference openato A("’)Vv* _ Vvk—l i TFk—l v=1,2,--,mg—1, (16)

v - ke k k— *
5;@,1' uicj = IOin Z gg ic Do wh*ere *V”k ' *: (UlTvl’ Ug, vlv T vumllfl,v)Tv % =
, hiC ' p=—m1+i ! ' (ul,va u2,'m T uml—l,v) ’
ik Ky ! k F'Lgk_l) = (flk,gl(u% Qk,';l(u)? T 'r]:zjil,v(u))T7
Ogiug = ——5— Z gL i .
Y 2] hym] ] Qg5 ) —q (v) . (v)
q=—ma+j and A = (am )(77L1—1)><(m1—1)7
With these operator definitions, the semi-implicit Euler e ogici o for j < i

method for the 2D-VOFNRDM with homogeneous Dirichlet o =1 _;;f a;“’ for _ i (17)
boundary conditions may be written in the following operato b e for i > i ’
form: riwdaly TOrg >

o N N Similarly, Eq. (15) may be written as

(1= 76903 — 765 Yuf ;= ul 7t + 7 £ (u), (12)

w k *
1<i§m171,1§j§m271, B( )W W ’LU:]_,Q,“',ml*]., (18)

where f/! (u) = f(uf ;" @i,y te1). where Wiy = (i, s ugj}(mﬁ LW =
We introduce an additional perturbation error equal 0% 1 Uia: W my—1) s B = (0,") (11a—1)x (ma1)»
2 (e i\ k o

((17.-) (té ? )UL% Eq. 5112)t f|s wr|tten in the following Jga_J for j < i;

irectional separation product form: OB N 7”w 0 dorj=i (19)

(1—76g%3) (1 —7d5%) ub = ufj_l +7 ij_l(u) (13) jgaJ“, for j > 4.

¥ w,j



Since f(u,z,y,t) is locally Lipschitz continuous, then
£ () = £ W)lloe < Lillef; Hloor 1€ [FF oo <
SO ’

Hence, Eq. (13) may be written in the matrix form

SHUF = Uk—1t 4+ pk-1,

where the matricesS and H represent the operators AS A" and B(v ) satisfy the conditions of Lemma 2, then
(1 — 60 J) and (1 — 7ot ;)’ respectively, according to the relationship between the matrisesnd A(*)

and the relationship between the matriddsand B("), we

Ut = [u]f,l,---,uﬁ“_l,l,u’ig,---,uﬁ%_l,g, see thatS and H also satisfy the conditions of Lemma 2.
k k
UL -1 7ulm1_1,7n2_1} Therefore
. N i .
and the vector”*~! is the source term. [I1E%] o |HE"| o < ||SHE"|| o

1B oo + 7L B o
(1+ 7))l
CEIE e,

The matrix.S is a block diagonal matrix of the formf =
diag(AM, AR ... A(m2=1)) " where each block is of size
my — 1.. Similarly, the matrixH is a block matrix of(ms —
1) x (mo — 1) blocks are such thaH “) is an (my — 1)

(my — 1) matrix, whereH(“’) is a d|agonal matan(
diag(b; ]), bg“;), e ,bEJ ), and where the notatlobfw) refers Now let us consider the convergence of the SIADM defined
to the (i, j)th entry of the matrixB(*) defined previously. ~ by (15). Letu(xmygvtk) be the exact solution of the 2D-

To prove the stability and convergence of the numericXOFNRDM (3)-(5),u} ; be the numerical solution of SIADM
method, we need the following lemma from [27]. defined by (13) LEW% w(zi, yj, te) — uf ; and Y™ =

VAN VAN VAN VAN

where L = max L; andC; = el7.
1<I<k

Lemma 2. Let X = [z1,22, , 7,7 and || X[ = [771,1;772,15 o a77m1—1,m2—1 : _ _
max |z;|. If the matrix D = (d; j)mxm Satisfies the con- Theorem 2.The SIADM as defined by (13) is convergent
1<i<m . ...
ditions and there is a positive constafif such that
Y oo < C5(r+h3+07), k=012,
Z |di,j| < |di,i|_1a (i:1725"'am)5 (21)
J=1,5#i Proof.
then The errorY* satisfies the following equation:
1 X |loo < | DX ||oo- (22) SHY" = Y"1 4 rFF1 4 rRF, (24)
Let uf, and @}, be the numerical and approximate sowhere|F*~![lo < LyY*~! and||R*||oc < Co(7+h3 +h3).
lutions Of the SIADM (13), respectively, and s@&" —  Similar to the proof of Theorem 1, we have
k k... -k T k. _ .k _ 7k
i oyt WHETeSS,; = iy =Ty AN iy <y, < SHY
let f*;(u) be the apprOX|mat|on of;’;(u). _ _ _
iy i iti < Y oo + Tl B lloo + TLil Y
Theorem 1.The SIADM defined by (13) is unconditionally = o0 o o0 ) Oz
stable, and there is a positive constaht such that < A+TL)IY oo + 7Co(T + hy + hy).

Using the discrete Gronwall inequality, we obtain

IE"loe < CTIE I, k=0,1,2,-.

Proof. Let F}'7! = fF-(u) — fF7 (u), then the erroE* Y¥loo < Cokre™ (7 +h3 + 1)
satisfies the following equation: < CoTe" (7 +h2 +h2)
SHEF = B 4 P, (23) = G3(r+h+hy).
= = = T Therefore the SIADM defined by (13) is convergent.
where F* = [Ff | (u), - ,FJ’@l_LMrl(u)] ) y (13) 9
From Lemma 1, we have!") (v) i £ 7).
Therefore i >0 a; <0 (07 7) IV. NUMERICAL RESULTS
M1 i1 In this section, two numerical examples are presented to
Z la (v>| _ Z I g? | evaluate our theoretical analysis from Section IlI.
Py e I i Example 1.Consider the following variable-order fractional
sl nonlinear reaction-diffusion
_ (v) ey ey
= - - Tiwla, < rfuga,, =lai; | — 1. Gu —1. 58(9\;cTa<f)v> +1. 56‘9'y;a(,)y) +u—ud+ f(z,y,t),
p=mmti t>0, 0<z,y<l
Similarly, we have
— u(0,y,t) =u(l,y,t) =0, 0<y<1, t>0, (25)
Z |b(w)| < |b(w)|
Pl i u(z,0,t) =u(z,1,t) =0, 0<a<1, t>0,

ThereforeA®™) and B()

satisfy the conditions of Lemma 2.

u(z,y,0) =22(1—2)*y?(1—y)?, 0<az,y<1



with homogeneous Dirichlet boundary conditions

fla,y,t) = (1 — 2)°y°(1 — y)° w(0,y,t) = u(2.5,5,t) =0, 0<y<25, t>0,
+m@wﬂﬁﬂffﬁ@mn+ﬂfxfﬁ?h@wﬂ w(z,0,t) = u(z,2.5,t) =0, 0<z<25 t>0.
—a(x,1 o a(x,
Foa(,9) [P0 Pl y) + (L= )0 fala )] In this simulation, we také, = h, = 2.5/256 andr = 0.1.
g(z,y) = et'!f(l—y)fm(m . The contour of the stable rotating solution in the FitzHugh-
F(3“"e(,?‘;§/zif°;)ﬁ Nagumo model (i.e.« = 2) is shown in Figure 1(a), and
ga(w,y) = T (3—a(z,y)) cos 22w’ the contours of the stable rotating solution in the fracion
filzy) = 1-— 3—3(?") _ (;_a(x 1)2)9(42_ — FitzHugh-Nagumo modela( = 1.8 and « = 1.6) are shown
- 6(1—a) léyl_w)é* oy in Figure 1(b) and 1(c), respectively. From this simulatiin
fa(z,y) 1- 3—a(wy)  B-alzy)(d-aley)’ can be seen that spiral waves in the space Riesz fractional
fs(x,y) 1 - 32bey — GoaGaia G FitzHugh-Nagumo model generate a curve and rotate clock-
falz,y) = 1-— 35(1(—;;)) - (12()1)&;32( = wise as observed in [29]. From Figures 1(a)-1(c), we _find
o(z,y) = 1+ sin% ;;’y Y Y that as expected, the wave travels more slowly as fractional
’ ' ordera decreases. The behaviour of the solution is particularly
The exact solution of (25) is(z,y,t) = e'(z — 2?)?(y — interesting for the case(z,y) = 1.5 + 0.5sin 22 sin 2L5y
y?)2. The contour of the stable rotating solution is shown in Fégur

1(d), where we observe that the model describes a smooth and

TABLE | continuous transition in the considered domain.

FORT = h2, THE ERROR BETWEEN THE EXACT SOLUTION AND THE
NUMERICAL SOLUTIONAT ¢ = 1.0

V. CONCLUSIONS

no_ Y R f . .. .. . . .
ho|max | Ty —ul@i g, ta)l | Rate of Convergency In this paper, a novel semi-implicit alternating direction
11//150 Z'EiﬁE'ggi S — method is proposed for approximating a new two-dimensional

1750 ~366E-005 1787~ 20710 varlgble-order fractional no_n!mear react|on—d|ffusn_m_mdel_
1/40 1.934E-005 1.929~ 40720 subject to homogeneous Dirichlet boundary conditions in a

rectangular domain. Stability and convergence of the ntktho
Table 1 shows the maximum error between the exact diave been established. These techniques are also usehfor si
lution and the numerical solution obtained by the SIADM inilating a two-dimensional variable-order fractional Fitgh-
Example 1 at timet = 1. From the above results, it can beNagumo model in a rectangular domain. The numerical re-
seen that the numerical results are in good agreement véth Slts demonstrate the effectiveness of these techniques. T
theoretical results. variable-order models can be used to capture complex spatia
These numerical techniques are now employed to sim@iynamics in heterogeneous media. We plan to apply this new
late the two-dimensional variable order fractional Fitgfdu @pproach to cardiac electrophysiology in any irregular diom
Nagumo model in a square domain. in our future work.
Example 2 Consider the following two-dimensional vari-
able order fractional FitzHugh-Nagumo model in a square
domainQg : 0 < z,y < 2.5:
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wherew is a normalized transmembrane potential and a
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of model parametersy = 0.1, ¢ = 0.01, =05, v =
1, & = 0, which is known to generate stable patterns iH!
the system in the form of reentrant spiral waves. The modg|
parameters have been taken from [29].

In this simulation, we consider the initial conditions as

[9]
1.0, 0<z<1.25 0<y<1.25
u(z,y,0) =< 0.0, 1.25<x<25, 0<y<l1.25
0.0, 0<z<25 125<y<25

0.0,
0.1,

0<z<25 0<y<1.25,
125<2 <25 0<y<25

ole.0) = {

self-similar protein dynamicSBiophysical J., 68, (1995), 46-53.

D.L. Klass, and T.W. Martinek, Electroviscous fluids. Rheological
properties, J. Appl. Phys. 38(1), (1967), 67-74.

T. Shiga, Deformation and viscoelastic behavior of pody gel in electric
fields, Proceedings of the Japanese Academy, Series B, Physical and
Biological Sciences, 74, (1998), 6-11.

L.C. Davis, Model of magnetorheological elastomeds,Appl. Phys.,
85(6),(1999), 3342-3351.

[10] B. Rodriguez, K.Burrage, D. Gavaghan, V. Grau P. Kohil ®.Noble,

(2010): Cardiac Applications of the Systems Biology Apmtodo Drug
Development, Clinical Pharmacology & Therapeutics, (2010) 88 1,
130134. doi:10.1038/clpt.2010.95.

[11] C.H. Luo and Y. Rudy, A model of the ventricular cardiactian

potential. Depolarization, repolarization, and theienaction,Circ. Res.,
68, 1991, 1501-1526.



(d) a(x,y) = 1.5+ 0.5sin %TI sin %Ty

Fig. 1. Spiral waves in the space Riesz fractional FitzhNglgumo model
with zero Dirichlet boundary conditions at= 1000, where K, = K, =
10— and with differentc .

[12] 1. Podlubny, Fractional Differential Equation8cademic Press, 1999.

[13] J. Ochoa-Tapia, F. Valdes-Parada and J. Alvarez-Ramk fractional-
order Darcys lawPhysica A, 374, (2007), 1-14.

[14] F.J. Valdes-Parada, J.A. Ochoa-Tapia and J. AlvamnirRez, Effective
medium equations for fractional Fick’s law in porous medkhysica A,
373 (2007) 339-353.

[15] Y. Zhang, D. Benson and D. Reeves, Time and space nditiesa
underlying fractional-derivative models: Distinctiondaliterature review
of field applications Adv. Water Resour, 32, (2009), 561-581.

[16] Q. Yang, F. Liu and I. Turner. Numerical methods for franal partial
differential equations with Riesz space fractional denres. Appl. Math.
Modelling, 34(1), (2010), 200-218.

[17] N. Cusimano, K. Burrage and P. Burrage, Fractional neder the
migration of biological cells in complex spatial domaifsNZIAM, 54,
(2013), C250-C270.

[18] F. Liu, S. Chen, I. Turner, K. Burrage and V. Anh, Numafisimulation
for two-dimensional Riesz space fractional diffusion dgres with a
nonlinear reaction termCent. Eur. J. Phys.,, 54, (2013), 1-12.

[19] F. Liu, I. Turner, V. Anh, Q. Yang and K. Burrage, A nuntai method
for the fractional Fitzhugh-Nagumo monodomain mod®ZIAM J., 154,
(2013), C608-C629.

[20] H.G. Leopold, Embedding of function spaces of varialoleler of
differentiation, Czechoslovak Math. J., 49 (1999), 633-644.

[21] M.D. Ruiz-Medina, V.V. Anh, and J.M. Angulo, Fractidngeneralized
random fields of variable ordeftochastic Analysis and Applications,
22(2) (2004), pp. 775-799.

[22] R.Lin, F. Liu, V. Anh and I. Turner, Stability and congence of a new
explicit finite-difference approximation for the varialdeder nonlinear
fractional diffusion equationAppl. Math. Comput., 212, (2009), 435-445.

[23] P. Zhuang, F. Liu, V. Anh and I. Turner, Numerical methoidr the
variable-order fractional advection-diffusion with a tingar source term,
SAM J. Numer. Anal., 47(3), (2009), 1760-1781.

[24] B. Baeumer, M. Kovaly and M. Meerschaert, Fractionarogluctiondis-
persal equationsBulletin of Mathematical Biology, 69, (2007), 2281-
2297.

[25] B. Baeumer, M. Kovaly and M. Meerschaert, Numericalusohs for
fractional reaction-diffusion equation§omput. and Math. with Appl.,
55, (2008), 2212-2226.

[26] C. Celik and M. Duman, Crank-Nicolson method for thecfianal
diffusion equation with the Riesz fractional derivative, Comp. Phys.,
231, (2012), 1743-1750.

[27] S. Chen, F. Liu, I. Turner and V. Anh, An implicit numesicmethod for
the two-dimensional fractional percolation equatidppl. Math. Comp.,
219, (2013), 4322-4331.

[28] F. Liu, V. Anh, I. Turner, S. Shen and J. Chen, A novel nuoa ap-
proximation for the Riesz space fractional advection-elispn equation,
IMA J. Appl. Math., (2012), 1-14.

[29] A. Bueno-Orovio, D. Kay and K. Burrage, Fourier spektmaethods
for fractional-in-space reaction-diffusion equation$T BApril 2014, DOI
10.1007/s10543-014-0484-2.

[30] A. Bueno-Orovio, D. Kay, V. Grau, B. Rodriguez and K. Bage, Frac-
tional diffusion models of cardiac electrical propagatieweal structural
heterogeneity effects on dispersion of repolarizatiomnstted, (2014).



