181 research outputs found
Troglitazone Reduces Glyoxalase I Protein Expression in Glioma and Potentiates the Effects of Chemotherapeutic Agents
Despite resistance of most gliomas to chemotherapy, approximately 2/3 of oligodendrogliomas show sensitivity to such agents. This sensitivity has been associated with deletions on chromosome 1p alone or in combination with 19q. Higher expression of the enzyme glyoxalase I has been found in oligodendrogliomas with chromosome 1p intact compared to those with a deletion. Higher expression of this enzyme is also associated with tumor chemoresistance in other cancers. The present study tested whether the drug troglitazone would make a glioma cell line more sensitive to chemotherapeutic agents. This drug was chosen because it has been shown to decrease glyoxalase I enzyme activity in cells. Treatment with troglitazone decreased expression of glyoxalase I, and potentiated cell death when used in combination with chemotherapeutic agents. This decrease in glyoxalase I protein may be one mechanism by which this potentiation occurs, and troglitazone may be a candidate for use in glioma therapy
Pharmacologic Modulation of Serine/Threonine Phosphorylation Highly Sensitizes PHEO in a MPC Cell and Mouse Model to Conventional Chemotherapy
The failure of cytotoxic cancer regimens to cure the most drug-resistant, well-differentiated solid tumors has been attributed to the heterogeneity of cell types that differ in their capacities for growth, differentiation, and metastases. We investigated the effect of LB1, a small molecule inhibitor of serine/threonine protein phosphatase 2A (PP2A), on its ability to inhibit a low growth fraction and highly drug-resistant solid neuroendocrine tumor, such as metastatic pheochromocytoma (PHEO). Subsequently, we evaluated the increased efficacy of chemotherapy combined with LB1.The effect of LB1 and temozolomide (TMZ), a standard chemotherapeutic agent that alone only transiently suppressed the growth and regression of metastatic PHEO, was evaluated in vitro on a single PHEO cell line and in vivo on mouse model of metastatic PHEO. In the present study, we show that metastatic PHEO, for which there is currently no cure, can be eliminated by combining LB1, thereby inhibiting PP2A, with TMZ. This new treatment approach resulted in long term, disease-free survival of up to 40% of animals bearing multiple intrahepatic metastases, a disease state that the majority of patients die from. Inhibition of PP2A was associated with prevention of G1/S phase arrest by p53 and of mitotic arrest mediated by polo-like kinase 1 (Plk-1).The elimination of DNA damage-induced defense mechanisms, through transient pharmacologic inhibition of PP2A, is proposed as a new approach for enhancing the efficacy of non-specific cancer chemotherapy regimens against a broad spectrum of low growth fraction tumors very commonly resistant to cytotoxic drugs
Novel zinc-based fixative for high quality DNA, RNA and protein analysis
We have developed a reliable, cost-effective and non-toxic fixative to meet the needs of contemporary molecular pathobiology research, particularly in respect of RNA and DNA integrity. The effects of 25 different fixative recipes on the fixed quality of tissues from C57BL/6 mice were investigated. Results from IHC, PCR, RT–PCR, RNA Agilent Bioanalyser and Real-Time PCR showed that a novel zinc-based fixative (Z7) containing zinc trifluoroacetate, zinc chloride and calcium acetate was significantly better than the standard zinc-based fixative (Z2) and neutral buffered formalin (NBF) for DNA, RNA and protein preservation. DNA sequences up to 2.4 kb in length and RNA fragments up to 361 bp in length were successfully amplified from Z7 fixed tissues, as demonstrated by PCR, RT–PCR and Real-Time PCR. Total protein analysis was achieved using 2-D gel electrophoresis. In addition, nucleic acids and proteins were very stable over a 6–14-month period. This improved, non-toxic and economical tissue fixative could be applied for routine use in pathology laboratories to permit subsequent genomic/proteomic studies
von Hippel-Lindau Disease-Associated Hemangioblastomas Are Derived from Embryologic Multipotent Cells
BACKGROUND: To determine the origin of the neoplastic cell in central nervous system (CNS) hemangioblastomas in von Hippel-Lindau disease (VHL) and its role in tumor formation and distribution, we characterized and differentiated neoplastic cells from hemangioblastomas removed from VHL patients. METHODS AND FINDINGS: A total of 31 CNS hemangioblastomas from 25 VHL patients were resected and analyzed. Tumor cells from the hemangioblastomas were characterized, grown, and differentiated into multiple lineages. Resected hemangioblastomas were located in the cerebellum (11 tumors), brainstem (five tumors), and spinal cord (15 tumors). Consistent with an embryologically derived hemangioblast, the neoplastic cells demonstrated coexpression of the mesodermal markers brachyury, Flk-1 (vascular endothelial growth factor-2), and stem cell leukemia (Scl). The neoplastic cells also expressed hematopoietic stem cell antigens and receptors including CD133, CD34, c-kit, Scl, erythropoietin, and erythropoietin receptor. Under specific microenvironments, neoplastic cells (hemangioblasts) were expanded and differentiated into erythrocytic, granulocytic, and endothelial progenitors. Deletion of the wild-type VHL allele in the hematopoietic and endothelial progeny confirmed their neoplastic origin. CONCLUSIONS: The neoplastic cell of origin for CNS hemangioblastomas in VHL patients is the mesoderm-derived, embryologically arrested hemangioblast. The hematopoietic and endothelial differentiation potential of these cells can be reactivated under suitable conditions. These findings may also explain the unique tissue distribution of tumor involvement
Recommended from our members
Somatic SF3B1 hotspot mutation in prolactinomas.
The genetic basis and corresponding clinical relevance of prolactinomas remain poorly understood. Here, we perform whole genome sequencing (WGS) on 21 patients with prolactinomas to detect somatic mutations and then validate the mutations with digital polymerase chain reaction (PCR) analysis of tissue samples from 227 prolactinomas. We identify the same hotspot somatic mutation in splicing factor 3 subunit B1 (SF3B1R625H) in 19.8% of prolactinomas. These patients with mutant prolactinomas display higher prolactin (PRL) levels (p = 0.02) and shorter progression-free survival (PFS) (p = 0.02) compared to patients without the mutation. Moreover, we identify that the SF3B1R625H mutation causes aberrant splicing of estrogen related receptor gamma (ESRRG), which results in stronger binding of pituitary-specific positive transcription factor 1 (Pit-1), leading to excessive PRL secretion. Thus our study validates an important mutation and elucidates a potential mechanism underlying the pathogenesis of prolactinomas that may lead to the development of targeted therapeutics
Inhibition of Protein Phosphatase 2A Sensitizes Mucoepidermoid Carcinoma to Chemotherapy via the PI3K-AKT Pathway in Response to Insulin Stimulus
Background/Aims: Protein phosphatase 2A (PP2A) is a ubiquitous serine/threonine phosphatase that mediates cell cycle regulation and metabolism. Mounting evidence has indicated that PP2A inhibition exhibits considerable anticancer potency in multiple types of human cancers. However, the efficacy of PP2A inhibition remains unexplored in mucoepidermoid carcinoma (MEC), especially in locally advanced and metastatic cases with limited systemic treatment. In this study, we demonstrated the therapeutic potency of LB100 in mucoepidermoid carcinoma. Methods: In this study, the expression of PP2A was evaluated using immunohistochemical (IHC) staining. The effects associated with LB100 alone and in combination with cisplatin for the treatment of mucoepidermoid carcinoma were investigated both in vitro, regarding metabolism, proliferation, and migration, and in vivo in a mucoepidermoid carcinoma xenograft model. In addition, with LB100 treatment and in response to an insulin stimulus, the expression levels and phosphorylation levels of targets in the PI3K-AKT pathway were determined using western blot analysis and immunoblotting. Results: The expression of protein phosphatase 2A was significantly upregulated in the clinical specimens of high-grade MECs compared with those of low-/medium-grade MECs and normal controls. In this article, we report that a small molecule PP2A inhibitor, LB100, decreased cellular viability and glycolytic activity and induced G2/M cell cycle arrest. Importantly, LB100 enhanced the efficacy of cisplatin in mucoepidermoid carcinoma cells both in vitro and in vivo. PP2A inhibition by LB100 increased the phosphorylation of insulin receptor substrate 1(IRS-1) on serine residues, downregulated the expression of phosphatidylinositol 3-kinase (PI3K) p110 alpha subunit and dephosphorylated AKT at Ser473 and Thr308 in mucoepidermoid carcinoma cells in response to insulin stimulus. Conclusion: These results highlight the translational potential of PP2A inhibition to synergize with cisplatin in mucoepidermoid carcinoma treatment
Multimodal Atlas of the Murine Inner Ear: From Embryo to Adult
The inner ear is a complex organ housed within the petrous bone of the skull. Its intimate relationship with the brain enables the transmission of auditory and vestibular signals via cranial nerves. Development of this structure from neural crest begins in utero and continues into early adulthood. However, the anatomy of the murine inner ear has only been well-characterized from early embryogenesis to post-natal day 6. Inner ear and skull base development continue into the post-natal period in mice and early adulthood in humans. Traditional methods used to evaluate the inner ear in animal models, such as histologic sectioning or paint-fill and corrosion, cannot visualize this complex anatomy in situ. Further, as the petrous bone ossifies in the postnatal period, these traditional techniques become increasingly difficult. Advances in modern imaging, including high resolution Micro-CT and MRI, now allow for 3D visualization of the in situ anatomy of organs such as the inner ear. Here, we present a longitudinal atlas of the murine inner ear using high resolution ex vivo Micro-CT and MRI
Somatic VHL gene alterations in MEN2-associated medullary thyroid carcinoma
BACKGROUND: Germline mutations in RET are responsible for multiple endocrine neoplasia type 2 (MEN2), an autosomal dominantly inherited cancer syndrome that is characterized by medullary thyroid carcinoma (MTC), pheochromocytoma, and parathyroid hyperplasia/adenoma. Recent studies suggest a "second hit" mechanism resulting in amplification of mutant RET. Somatic VHL gene alterations are implicated in the pathogenesis of MEN2 pheochromocytomas. We hypothesized that somatic VHL gene alterations are also important in the pathogenesis of MEN2-associated MTC. METHODS: We analyzed 6 MTCs and 1 C-cell hyperplasia (CCH) specimen from 7 patients with MEN2A and RET germline mutations in codons 609, 618, 620, or 634, using microdissection, microsatellite analysis, phosphorimage densitometry, and VHL mutation analysis. RESULTS: First, we searched for allelic imbalance between mutant and wild-type RET by using the polymorphic markers D10S677, D10S1239, and RET on thyroid tissue from these patients. Evidence for RET amplification by this technique could be demonstrated in 3 of 6 MTCs. We then performed LOH analysis using D3S1038 and D3S1110 which map to the VHL gene locus at 3p25/26. VHL gene deletion was present in 3 MTCs. These 3 MTCs also had an allelic imbalance between mutant and wild-type RET. Mutation analysis of the VHL gene showed a somatic frameshift mutation in 1 MTC that also demonstrated LOH at 3p25/26. In the 2 other MTCs with allelic imbalance of RET and somatic VHL gene deletion, no somatic VHL mutation could be detected. The CCH specimen did neither reveal RET imbalance nor somatic VHL gene alterations. CONCLUSION: These data suggest that a RET germline mutation is necessary for development of CCH, that allelic imbalance between mutant and wild-type RET may set off tumorigenesis, and that somatic VHL gene alterations may not play a major role in tumorigenesis of MEN2A-associated MTC
- …