10,841 research outputs found

    Dark Periods in Rabi Oscillations of Superconducting Phase Qubit Coupled to a Microscopic Two-Level System

    Full text link
    We proposed a scheme to demonstrate macroscopic quantum jumps in a superconducting phase qubit coupled to a microscopic two-level system in the Josephson tunnel junction. Irradiated with suitable microwaves, the Rabi oscillations of the qubit exhibit signatures of quantum jumps: a random telegraph signal with long intervals of intense macroscopic quantum tunneling events (bright periods) interrupted by the complete absence of tunneling events (dark periods). An analytical model was developed to describe the width of the dark periods quantitatively. The numerical simulations indicate that our analytical model captured underlying physics of the system. Besides calibrating the quality of the microscopic two-level system, our results have significance in quantum information process since dark periods in Rabi oscillations are also responsible for errors in quantum computing with superconducting qubits.Comment: 9 pages, 8 figure

    A Simple Iterative Algorithm for Parsimonious Binary Kernel Fisher Discrimination

    Get PDF
    By applying recent results in optimization theory variously known as optimization transfer or majorize/minimize algorithms, an algorithm for binary, kernel, Fisher discriminant analysis is introduced that makes use of a non-smooth penalty on the coefficients to provide a parsimonious solution. The problem is converted into a smooth optimization that can be solved iteratively with no greater overhead than iteratively re-weighted least-squares. The result is simple, easily programmed and is shown to perform, in terms of both accuracy and parsimony, as well as or better than a number of leading machine learning algorithms on two well-studied and substantial benchmarks

    A stress-induced cellular aging model with postnatal neural stem cells

    Get PDF
    Aging refers to the physical and functional decline of the tissues over time that often leads to age-related degenerative diseases. Accumulating evidence implicates that the senescence of neural stem cells (NSCs) is of paramount importance to the aging of central neural system (CNS). However, exploration of the underlying molecular mechanisms has been hindered by the lack of proper aging models to allow the mechanistic examination within a reasonable time window. In the present study, we have utilized a hydroxyurea (HU) treatment protocol and effectively induced postnatal subventricle NSCs to undergo cellular senescence as determined by augmented senescence-associated-β-galactosidase (SA-β-gal) staining, decreased proliferation and differentiation capacity, increased G0/G1 cell cycle arrest, elevated reactive oxygen species (ROS) level and diminished apoptosis. These phenotypic changes were accompanied by a significant increase in p16, p21 and p53 expression, as well as a decreased expression of key proteins in various DNA repair pathways such as xrcc2, xrcc3 and ku70. Further proteomic analysis suggests that multiple pathways are involved in the HU-induced NSC senescence, including genes related to DNA damage and repair, mitochondrial dysfunction and the increase of ROS level. Intriguingly, compensatory mechanisms may have also been initiated to interfere with apoptotic signaling pathways and to minimize the cell death by downregulating Bcl2-associated X protein (BAX) expression. Taken together, we have successfully established a cellular model that will be of broad utilities to the molecular exploration of NSC senescence and aging

    Fabrication of Porous Anodic Alumina with Ultrasmall Nanopores

    Get PDF
    Anodization of Al foil under low voltages of 1–10 V was conducted to obtain porous anodic aluminas (PAAs) with ultrasmall nanopores. Regular nanopore arrays with pore diameter 6–10 nm were realized in four different electrolytes under 0–30°C according to the AFM, FESEM, TEM images and current evolution curves. It is found that the pore diameter and interpore distance, as well as the barrier layer thickness, are not sensitive to the applied potentials and electrolytes, which is totally different from the rules of general PAA fabrication. The brand-new formation mechanism has been revealed by the AFM study on the samples anodized for very short durations of 2–60 s. It is discovered for the first time that the regular nanoparticles come into being under 1–10 V at the beginning of the anodization and then serve as a template layer dominating the formation of ultrasmall nanopores. Under higher potentials from 10 to 40 V, the surface nanoparticles will be less and less and nanopores transform into general PAAs

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Identifying the structure of Zn-N-2 active sites and structural activation

    Get PDF
    Identification of active sites is one of the main obstacles to rational design of catalysts for diverse applications. Fundamental insight into the identification of the structure of active sites and structural contributions for catalytic performance are still lacking. Recently, X-ray absorption spectroscopy (XAS) and density functional theory (DFT) provide important tools to disclose the electronic, geometric and catalytic natures of active sites. Herein, we demonstrate the structural identification of Zn-N-2 active sites with both experimental/theoretical X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectra. Further DFT calculations reveal that the oxygen species activation on Zn-N-2 active sites is significantly enhanced, which can accelerate the reduction of oxygen with high selectivity, according well with the experimental results. This work highlights the identification and investigation of Zn-N-2 active sites, providing a regular principle to obtain deep insight into the nature of catalysts for various catalytic applications
    corecore