65,177 research outputs found
El Niño-related summer precipitation anomalies in Southeast Asia modulated by the Atlantic multidecadal oscillation
AbstractHow the Atlantic Multidecadal Oscillation (AMO) affects El Niño-related signals in Southeast Asia is investigated in this study on a subseasonal scale. Based on observational and reanalysis data, as well as numerical model simulations, El Niño-related precipitation anomalies are analyzed for AMO positive and negative phases, which reveals a time-dependent modulation of the AMO: (i) In May?June, the AMO influences the precipitation in Southern China (SC) and the Indochina peninsula (ICP) by modulating the El Niño-related air-sea interaction over the western North Pacific (WNP). During negative AMO phases, cold sea surface temperature anomalies (SSTAs) over the WNP favor the maintaining of the WNP anomalous anticyclone (WNPAC). The associated southerly (westerly) anomalies on the northwest (southwest) flank of the WNPAC enhance (reduce) the climatological moisture transport to SC (the ICP) and result in wetter (drier) than normal conditions. In contrast, during positive AMO phases, weak SSTAs over the WNP lead to limited influence of El Niño on precipitation in Southeast Asia. (ii) In July?August, the teleconnection impact from the North Atlantic is more manifest than that in May?June. During positive AMO phases, the warmer than normal North Atlantic favors anomalous wave trains, which propagate along the ?great circle route? and result in positive pressure anomalies over SC, consequently suppressing precipitation in SC and the ICP. During negative AMO phases, the anomalous wave trains tend to propagate eastward from Europe to Northeast Asia along the summer Asian jet, exerting limited influence on Southeast Asia
Interdecadal variability of winter precipitation in Southeast China
Interdecadal variability of observed winter precipitation in Southeast China (1961–2010) is characterized by the first empirical orthogonal function of the three-monthly Standardized Precipitation Index (SPI) subjected to a 9-year running mean. For interdecadal time scales the dominating spatial modes represent monopole features involving the Arctic Oscillation (AO) and the sea surface temperature (SST) anomalies. Dynamic composite analysis (based on NCEP/NCAR reanalyzes) reveals the following results: (1) Interdecadal SPI-variations show a trend from a dryer state in the 1970s via an increase during the 1980s towards stabilization on wetter conditions commencing with the 1990s. (2) Increasing wetness in Southeast China is attributed to an abnormal anticyclone over south Japan, with northward transport of warm and humid air from the tropical Pacific to South China. (3) In mid-to-high latitudes the weakened southward flow of polar airmasses induces low-level warming over Eurasia due to stronger AO by warmer zonal temperature advection. This indicates that AO is attributed to the Southeast China precipitation increase influenced by circulation anomalies over the mid-to-high latitudes. (4) The abnormal moisture transport along the southwestern boundary of the abnormal anticyclone over south Japan is related to anomalous south-easterlies modulated by the SST anomalies over Western Pacific Ocean; a positive (negative) SST anomaly will strengthen (weaken) warm and humid air transport, leading to abundant (reduced) precipitation in Southeast China. That is both AO and SST anomalies determine the nonlinear trend observed in winter precipitation over Southeast China
Techniques of replica symmetry breaking and the storage problem of the McCulloch-Pitts neuron
In this article the framework for Parisi's spontaneous replica symmetry
breaking is reviewed, and subsequently applied to the example of the
statistical mechanical description of the storage properties of a
McCulloch-Pitts neuron. The technical details are reviewed extensively, with
regard to the wide range of systems where the method may be applied. Parisi's
partial differential equation and related differential equations are discussed,
and a Green function technique introduced for the calculation of replica
averages, the key to determining the averages of physical quantities. The
ensuing graph rules involve only tree graphs, as appropriate for a
mean-field-like model. The lowest order Ward-Takahashi identity is recovered
analytically and is shown to lead to the Goldstone modes in continuous replica
symmetry breaking phases. The need for a replica symmetry breaking theory in
the storage problem of the neuron has arisen due to the thermodynamical
instability of formerly given solutions. Variational forms for the neuron's
free energy are derived in terms of the order parameter function x(q), for
different prior distribution of synapses. Analytically in the high temperature
limit and numerically in generic cases various phases are identified, among
them one similar to the Parisi phase in the Sherrington-Kirkpatrick model.
Extensive quantities like the error per pattern change slightly with respect to
the known unstable solutions, but there is a significant difference in the
distribution of non-extensive quantities like the synaptic overlaps and the
pattern storage stability parameter. A simulation result is also reviewed and
compared to the prediction of the theory.Comment: 103 Latex pages (with REVTeX 3.0), including 15 figures (ps, epsi,
eepic), accepted for Physics Report
Performance of Cross-layer Design with Multiple Outdated Estimates in Multiuser MIMO System
By combining adaptive modulation (AM) and automatic repeat request (ARQ) protocol as well as user scheduling, the cross-layer design scheme of multiuser MIMO system with imperfect feedback is presented, and multiple outdated estimates method is proposed to improve the system performance. Based on this method and imperfect feedback information, the closed-form expressions of spectral efficiency (SE) and packet error rate (PER) of the system subject to the target PER constraint are respectively derived. With these expressions, the system performance can be effectively evaluated. To mitigate the effect of delayed feedback, the variable thresholds (VTs) are also derived by means of the maximum a posteriori method, and these VTs include the conventional fixed thresholds (FTs) as special cases. Simulation results show that the theoretical SE and PER are in good agreement with the corresponding simulation. The proposed CLD scheme with multiple estimates can obtain higher SE than the existing CLD scheme with single estimate, especially for large delay. Moreover, the CLD scheme with VTs outperforms that with conventional FTs
Is Explicit Congestion Notification usable with UDP?
We present initial measurements to determine if ECN is usable with
UDP traffic in the public Internet. This is interesting because ECN
is part of current IETF proposals for congestion control of UDPbased
interactive multimedia, and due to the increasing use of UDP
as a substrate on which new transport protocols can be deployed.
Using measurements from the author’s homes, their workplace,
and cloud servers in each of the nine EC2 regions worldwide, we
test reachability of 2500 servers from the public NTP server pool,
using ECT(0) and not-ECT marked UDP packets. We show that
an average of 98.97% of the NTP servers that are reachable using
not-ECT marked packets are also reachable using ECT(0) marked
UDP packets, and that ~98% of network hops pass ECT(0) marked
packets without clearing the ECT bits. We compare reachability of
the same hosts using ECN with TCP, finding that 82.0% of those
reachable with TCP can successfully negotiate and use ECN. Our
findings suggest that ECN is broadly usable with UDP traffic, and
that support for use of ECN with TCP has increased
Superconductivity in Ti-doped Iron-Arsenide Compound Sr4Cr0.8Ti1.2O6Fe2As2
Superconductivity was achieved in Ti-doped iron-arsenide compound
Sr4Cr0.8Ti1.2O6Fe2As2 (abbreviated as Cr-FeAs-42622). The x-ray diffraction
measurement shows that this material has a layered structure with the space
group of \emph{P4/nmm}, and with the lattice constants a = b = 3.9003 A and c =
15.8376 A. Clear diamagnetic signals in ac susceptibility data and
zero-resistance in resistivity data were detected at about 6 K, confirming the
occurrence of bulk superconductivity. Meanwhile we observed a superconducting
transition in the resistive data with the onset transition temperature at 29.2
K, which may be induced by the nonuniform distribution of the Cr/Ti content in
the FeAs-42622 phase, or due to some other minority phase.Comment: 3 pages, 3 figure
- …