66,400 research outputs found
Game Theory Meets Network Security: A Tutorial at ACM CCS
The increasingly pervasive connectivity of today's information systems brings
up new challenges to security. Traditional security has accomplished a long way
toward protecting well-defined goals such as confidentiality, integrity,
availability, and authenticity. However, with the growing sophistication of the
attacks and the complexity of the system, the protection using traditional
methods could be cost-prohibitive. A new perspective and a new theoretical
foundation are needed to understand security from a strategic and
decision-making perspective. Game theory provides a natural framework to
capture the adversarial and defensive interactions between an attacker and a
defender. It provides a quantitative assessment of security, prediction of
security outcomes, and a mechanism design tool that can enable
security-by-design and reverse the attacker's advantage. This tutorial provides
an overview of diverse methodologies from game theory that includes games of
incomplete information, dynamic games, mechanism design theory to offer a
modern theoretic underpinning of a science of cybersecurity. The tutorial will
also discuss open problems and research challenges that the CCS community can
address and contribute with an objective to build a multidisciplinary bridge
between cybersecurity, economics, game and decision theory
Far-infrared vibrational properties of tetragonal C60 polymer
We report high-resolution far-infrared transmittance measurements and quantum-molecular-dynamics calculations of the two-dimensional tetragonal (7) high-temperature/high-pressure C-60 polymer, as a complement to our previous work on the C-60 dimer, and the one-dimensional orthorhombic (O) and two-dimensional rhombohedral (R) C-60 Polymers [V. C. Long et at., Phys. Rev. B 61, 13 191 (2000)]. The spectral features are assigned as intramolecular modes according to our quantum-molecular-dynamics calculations. In addition, we determine the I-h C-60 parent symmetry of each polymer vibrational mode by expanding the calculated polymer eigenvectors in terms of our calculated eigenvectors for I-h C-60. We find that many of the T-polymer vibrational modes are derived from more than one I-h C-60 parent symmetry, confirming that a weak perturbation model is inadequate for these covalently bonded C-60 balls. In particular, strongly infrared-active T-polymer modes with frequencies of 606 and 610 cm(-1) are found to be derived from a linear combination of three or more I-h C-60 parent modes. As in the O and R polymers, modes of the T polymer with substantial T-1u(2) character, which are polarized in the stretched directions, are found to have large downshifts. Finally, in our comparison of theory with experiment, we find indications that the in-plane lattice of the T polymer may not actually be square
Enhancement of vortex pinning in superconductor/ferromagnet bilayers via angled demagnetization
We use local and global magnetometry measurements to study the influence of
magnetic domain width w on the domain-induced vortex pinning in
superconducting/ferromagnetic bilayers, built of a Nb film and a ferromagnetic
Co/Pt multilayer with perpendicular magnetic anisotropy, with an insulating
layer to eliminate proximity effect. The quasi-periodic domain patterns with
different and systematically adjustable width w, as acquired by a special
demagnetization procedure, exert tunable vortex pinning on a superconducting
layer. The largest enhancement of vortex pinning, by a factor of more than 10,
occurs when w ~ 310 nm is close to the magnetic penetration depth.Comment: 5 pages, 3 figures, accepted to Phys. Rev. B, Rapid Communication
Heavy Pentaquarks
We construct the spin-flavor wave functions of the possible heavy pentaquarks
containing an anti-charm or anti-bottom quark using various clustered quark
models. Then we estimate the masses and magnetic moments of the or heavy pentaquarks. We emphasize the difference in the
predictions of these models. Future experimental searches at BESIII, CLEOc,
BELLE, and LEP may find these interesting states
Analysis of synaptic weight distribution in an Izhikevich network
Izhikevich network is a relatively new neuronal network, which consists of cortical spiking model neurons with axonal conduction delays and spike-timingdependent
plasticity (STDP) with hard bound adaptation. In this work, we use uniform and Gaussian distributions respectively to initialize the weights of all excitatory neurons. After the network undergoes a few minutes of STDP adaptation, we can see that the weights of all synapses in the network, for both initial weight distributions, form a bimodal distribution, and numerically the established distribution presents dynamic stability
- …