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Abstract. Izhikevich network is a relatively new neuronal network, which consists 
of cortical spiking model neurons with axonal conduction delays and spike-timing-
dependent plasticity (STDP) with hard bound adaptation. In this work, we use 
uniform and Gaussian distributions respectively to initialize the weights of all 
excitatory neurons. After the network undergoes a few minutes of STDP 
adaptation, we can see that the weights of all synapses in the network, for both 
initial weight distributions, form a bimodal distribution, and numerically the 
established distribution presents dynamic stability. 
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1 Introduction 

Since Izhikevich’s neuronal network [1] was presented some 6 years ago, it has been 
used efficiently in simulating the activities of human brain [2]. Specifically, the 
network exhibits cortical-like dynamics, including delta and gamma oscillations 
which correspond to deep sleep and extreme anxiety states, respectively. One 
thousand cortical spiking neurons with axonal delays [3] and spike-timing dependent 
plasticity (STDP) can make up a minimal phenomenological spiking network. These 
constituent neurons can be described by the simple Izhikevich neuronal model [4, 5] 
for the spiking behaviors like regular spiking (RS) and fast spiking (FS). Unlike the 
classical Hodgkin-Huxley spiking neuron model and the leaky integrate-and-fire 
neuron model, Izhikevich spiking neuronal model combines biological plausibility 
and computational efficiency, and can simulate some 20 different types of neuronal 
activities by simply modifying its 4 parameters. 

In this work, we modify the original Izhikevich network [1] by using two typical 
distributions, i.e., uniform distribution and Gaussian distribution, respectively, to 
initialize the weights of all excitatory neurons in Izhikevich network. In the process of 
simulation, for both initial weight distributions, we find that the network approaches a 
similar bimodal distribution. Numerical experiments show the bimodal distribution is 
dynamically stable. Another important thing is to observe this interesting procedure in 
order to find the differences and similarities between these two cases. 

The paper is organized as follows. The next section introduces the model of 
Izhikevich’s spiking neuron and relevant knowledge of the uniform and Gaussian 
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distributions. Section 3 includes the results of simulation with analysis. Section 4 
presents the concluding remarks. 

2 Model 

2.1  Architecture 

The Izhikevich network [1] is a minimal spiking neuronal model that consists of 1000 
randomly connected spiking neurons with conduction delays and STDP [6], and is 
sparse with 0.1 probability of connection between any two neurons with the random 
connection strength normalized in the range of (0,10). Among all these neurons, there 
are 800 excitatory neurons showing regular spikes (RS) and 200 inhibitory neurons 
showing fast spikes (FS). Although there are more excitatory neurons in the network, 
their firing rate is relatively lower than the inhibitory neurons’. As a result, the 
network exhibits a state with balance of excitation and inhibition.  

The Izhikevich spiking neuron [4] is represented by the following two-
dimensional system of ordinary differential equations [7]: 

 
                                              

After the spike reaches its apex (+30mV), the membrane voltage (v) and the 
recovery variable (u) are reset according to the following equation: 

 
   

Where a, b, c and d are dimensionless parameters. Different configurations of {a, 
b, c, d} reproduce different kinds of neuronal dynamics. In our work, if a neuron is an 
excitatory one, it has {a, b, c, d} = {0.02, 0.2, -65, 8}; if a neuron is an inhibitory one, 
it has {a, b, c, d} = {0.1, 0.2, -65, 2}. The former one presents RS neurons and the 
latter one presents FS neurons.RS and FS neurons are the major class of excitatory 
and inhibitory neurons, respectively. The main phenomenological difference between 
RS and FS is that RS fires in low frequency and FS fires in high frequency. 

At every time step of simulation, the network has three tasks: firstly, to assign a 
random thalamic input to a random neuron; then to use the Izhikevich spiking neuron 
to detect the happening of spike in each neuron; finally, to carry out STDP learning. 

STDP [8, 9, 10, 11] is a kind of unsupervised learning [12] reflecting the causal 
relation of spike generation by two neurons interconnected by a synapse. Long-term 
potentiation (LTP) of the synapse occurs if the pre-synaptic action potentials precede 
post-synaptic firing by no more than 50ms; long-term depression (LTD) occurs if the 
pre-synaptic action potentials follow post-synaptic spikes by the similar time window. 
In this work we use the hard bound STDP to adapt the excitatory synapses in 
Izhikevich network (for a review of hard and soft bound STDP see [13]).  

2.2  Uniform and Gaussian distribution  

In Izhikevich neuronal network, weights of excitatory neurons range from 0 to 10 and 
weights of inhibitory neuron are -5 all the time. So we lay emphasis on the excitatory 
neurons and allocate the synapses with the weight interval (0-10) into 20 bins.  



 

 

Before simulating the network, we have to do some preliminary works. First of 
all, the synaptic weights of excitatory neurons are initialized. In this work, we choose 
two kinds of distributions as mentioned in section 1. Then, the weight interval (0-10) 
is divided into 20 bins, from (0-0.5) to (9.5-10).  

 
Fig. 1: Initial weight distribution. The top one is uniform weight distribution and 
the bottom one is Gaussian weight distribution. The X-axis shows the bin index 

and the Y-axis shows the number of synapses in a certain weight bin. 

In the top of Fig. 1, we can see that the excitatory synaptic weights are 
distributed randomly in different bins with a uniform distribution and that is relevant 
to the modification of Izhikevich Network by using a uniform function. In the bottom 
of Fig. 1, the excitatory synaptic weights form a classic bell curve in a Gaussian 

distribution, which is expressed as  with  and . In this 
configuration we can see the 13th bin has the maximum value, and other values 
decrease in the neighboring bins.  

 Despite of the initial state of excitatory neurons’ weights in either uniform or 
Gaussian distribution, the synaptic weights will evolve with the number of synapses 
in both end bins of the whole weight interval increasing gradually, and decreasing in 
the middle bins. This dynamics is mediated by STDP learning. The final state of the 
weight distribution is represented by a dynamic bimodal distribution as we can see in 
the next section. 

3 Simulation Results 

We run the Izhikevich neuronal network which is configured with the aforementioned 
distributions and random delays normalized in a range between 0 and 20 milliseconds, 
for several minutes with STDP.  

Here we take the uniform weight distribution as an example (as shown in Fig. 2, 
Left). The synaptic weight distributions gradually present a bimodal mode when the 
simulation carries on. After some time of simulation, the difference of bin value 
becomes small in the middle of weight bins, while the difference of bin value is large 
for the first and the last bins. If the first bin value is large, then the last bin value is 
small, and vice versa.  



 

 

 
Fig. 2: Bimodal distribution of the excitatory synaptic weight distribution of a 

single excitatory neuron after STDP mediated simulation in an Izhikevich network. 
Left column (initially uniform weight distribution) has two plots showing the 

dynamic bimodal distributions of excitatory synaptic weights after 100 (upper) and 
120 (lower) seconds of simulation time. Right column (initially Gaussian weight 

distribution) shows a dynamic bimodal distribution as well, after simulation time of 
120 (upper) and 130 (lower) seconds, respectively. In actual, we can see the 

network can reach dynamic stability by using two time spans in both distributions. 
The X-axis shows the bin index and the Y-axis shows the number of synapses in a 

certain bin. 

This phenomenon reflects dynamic stability of synaptic weight distribution after 
an initial STDP adaptation period when the distribution remains similar in shape. We 
observe that, in the first bin of weight, although some synapses which were allocated 
to that bin can leave due to STDP adaptation, some other synapses with the equivalent 
number of leaving ones will join that bin. And we can say that Izhikevich neuronal 
network reaches dynamic stability under this circumstance. The first, middle and last 
weight bins are significant, since the numbers of synapses obey bimodal distribution.   

 



 

 

Fig. 3: Variation tendency of the number of synapses in three bins, i.e., the two 
ending bins and the middle one, and the overall synaptic difference of an excitatory 

neuron in simulation with an initial uniform weight distribution. (A)In the first 
weight bin, the number of synapses increases until the network reaches dynamic 

stability. (B) In the middle weight bin, the number of synapses decreases until the 
network reaches dynamic stability. (C) In the last weight bin, the number of 

synapses increases until the network reaches dynamic stability. (D) shows that, 
although each synaptic weight is changing in simulation, the sum of all synaptic 
weights of an excitatory neuron is a constant value. The X-axis shows time step 

(each time step presents 5s, that is to say, the largest simulating time is 250s 
according to the last time step) and the Y-axis shows the number of synapses in a 

certain time step. 

No matter what the initial weight distribution is (uniform or Gaussian 
distribution), variation tendency of the number of synapses in three bins mentioned 
above and the overall synaptic difference is similar to some extent, as shown in Fig. 3 
and Fig. 4. If the network reaches dynamic stability, variation of weight distribution 
remains but is much smaller than the initial stage. In Fig. 4(B), for instance, there is 
an obvious downtrend as the initial weight distribution is Gaussian distribution.  

 
Fig. 4: Variation tendency of the number of synapses in three bins and the overall 
synaptic difference of an excitatory neuron in simulation with an initial Gaussian 
weight distribution (the plot descriptions are similar to Fig. 3). In (B), the middle 
weight bin has the maximum synapse number in the initial state, which decreases 

until the network reaches dynamic stability. 

The choice of the length of the simulation time is critical to reflect the dynamic 
stability of the system adapted by STDP. A short simulation time cannot reveal the 
dynamic stability. In contrast, a long time can not only show the stability but also the 
details of the change of synapse number in corresponding bins. 



 

 

4 Concluding remarks 

In this paper, we use two kinds of distributions to initialize the state of excitatory 
neurons’ weights, and then to train Izhikevich neuronal network to achieve dynamic 
stability and to observe the distribution of the number of synapses of an arbitrary 
neuron under STDP adaptation. 

The Izhikevich network undergoes an unsupervised, hard bound STDP learning 
for several minutes, and reaches a state with some synapses strengthened and some 
others weakened. If the learning time is too short, the network will be unstable. If the 
learning time is long enough, the network will be stable dynamically and a typical 
bimodal distribution of synapses of an arbitrary excitatory neuron will emerge.  

Through network simulation, data analysis and figures comparison, we can come 
to the conclusion that, when the network reaches dynamic stability after STDP 
adaptation for a period of time, the weight of synapses  forms a bimodal distribution 
for each excitatory neuron and the established distribution numerically presents 
dynamic stability. 
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