93,051 research outputs found
Gravitational lensing statistical properties in general FRW cosmologies with dark energy component(s): analytic results
Various astronomical observations have been consistently making a strong case
for the existence of a component of dark energy with negative pressure in the
universe. It is now necessary to take the dark energy component(s) into account
in gravitational lensing statistics and other cosmological tests. By using the
comoving distance we derive analytic but simple expressions for the optical
depth of multiple image, the expected value of image separation and the
probability distribution of image separation caused by an assemble of singular
isothermal spheres in general FRW cosmological models with dark energy
component(s). We also present the kinematical and dynamical properties of these
kinds of cosmological models and calculate the age of the universe and the
distance measures, which are often used in classical cosmological tests. In
some cases we are able to give formulae that are simpler than those found
elsewhere in the literature, which could make the cosmological tests for dark
energy component(s) more convenient.Comment: 14 pages, no figure, Latex fil
Gravitational Lensing Statistics as a Probe of Dark Energy
By using the comoving distance, we derive an analytic expression for the
optical depth of gravitational lensing, which depends on the redshift to the
source and the cosmological model characterized by the cosmic mass density
parameter , the dark energy density parameter and its
equation of state . It is shown that, the larger the
dark energy density is and the more negative its pressure is, the higher the
gravitational lensing probability is. This fact can provide an independent
constraint for dark energy.Comment: 9 pages, 2 figure
On the gravitational wave background from compact binary coalescences in the band of ground-based interferometers
This paper reports a comprehensive study on the gravitational wave (GW)
background from compact binary coalescences. We consider in our calculations
newly available observation-based neutron star and black hole mass
distributions and complete analytical waveforms that include post-Newtonian
amplitude corrections. Our results show that: (i) post-Newtonian effects cause
a small reduction in the GW background signal; (ii) below 100 Hz the background
depends primarily on the local coalescence rate and the average chirp
mass and is independent of the chirp mass distribution; (iii) the effects of
cosmic star formation rates and delay times between the formation and merger of
binaries are linear below 100 Hz and can be represented by a single parameter
within a factor of ~ 2; (iv) a simple power law model of the energy density
parameter up to 50-100 Hz is sufficient to be used
as a search template for ground-based interferometers. In terms of the
detection prospects of the background signal, we show that: (i) detection (a
signal-to-noise ratio of 3) within one year of observation by the Advanced LIGO
detectors (H1-L1) requires a coalescence rate of for binary neutron stars (binary black holes); (ii) this limit on
could be reduced 3-fold for two co-located detectors, whereas the
currently proposed worldwide network of advanced instruments gives only ~ 30%
improvement in detectability; (iii) the improved sensitivity of the planned
Einstein Telescope allows not only confident detection of the background but
also the high frequency components of the spectrum to be measured. Finally we
show that sub-threshold binary neutron star merger events produce a strong
foreground, which could be an issue for future terrestrial stochastic searches
of primordial GWs.Comment: A few typos corrected to match the published version in MNRA
Robustness of predator-prey models for confinement regime transitions in fusion plasmas
Energy transport and confinement in tokamak fusion plasmas is usually determined by the coupled nonlinear interactions of small-scale drift turbulence and larger scale coherent nonlinear structures, such as zonal flows, together with free energy sources such as temperature gradients. Zero-dimensional models, designed to embody plausible physical narratives for these interactions, can help to identify the origin of enhanced energy confinement and of transitions between confinement regimes. A prime zero-dimensional paradigm is predator-prey or Lotka-Volterra. Here, we extend a successful three-variable (temperature gradient; microturbulence level; one class of coherent structure) model in this genre [M. A. Malkov and P. H. Diamond, Phys. Plasmas 16, 012504 (2009)], by adding a fourth variable representing a second class of coherent structure. This requires a fourth coupled nonlinear ordinary differential equation. We investigate the degree of invariance of the phenomenology generated by the model of Malkov and Diamond, given this additional physics. We study and compare the long-time behaviour of the three-equation and four-equation systems, their evolution towards the final state, and their attractive fixed points and limit cycles. We explore the sensitivity of paths to attractors. It is found that, for example, an attractive fixed point of the three-equation system can become a limit cycle of the four-equation system. Addressing these questions which we together refer to as “robustness” for convenience is particularly important for models which, as here, generate sharp transitions in the values of system variables which may replicate some key features of confinement transitions. Our results help to establish the robustness of the zero-dimensional model approach to capturing observed confinement phenomenology in tokamak fusion plasmas
Numerical simulations of negative-index refraction in wedge-shaped metamaterials
A wedge-shaped structure made of split-ring resonators (SRR) and wires is
numerically simulated to evaluate its refraction behavior. Four frequency
bands, namely, the stop band, left-handed band, ultralow-index band, and
positive-index band, are distinguished according to the refracted field
distributions. Negative phase velocity inside the wedge is demonstrated in the
left-handed band and the Snell's law is conformed in terms of its refraction
behaviors in different frequency bands. Our results confirmed that negative
index of refraction indeed exists in such a composite metamaterial and also
provided a convincing support to the results of previous Snell's law
experiments.Comment: 18 pages, 6 figure
Composition-tuned magneto-optical Kerr effect in L10-MnxGa films with giant perpendicular anisotropy
We report the large polar magnetooptical Kerr effect in L10-MnxGa epitaxial
films with giant perpendicular magnetic anisotropy in a wide composition range.
The Kerr rotation was enhanced by a factor of up to 10 by decreasing Mn atomic
concentration, which most likely arises from the variation of the effective
spin-orbit coupling strength, compensation effect of magnetic moments at
different Mn atom sites, and overall strain. The Kerr ellipticity and the
magnitude of the complex Kerr angle is found to have more complex
composition-dependence that varies with the photon energy. These L10-MnxGa
films show large Kerr rotation of up to 0.10o, high reflectivity of 35%-55% in
a wide wavelength range of 400~850 nm, and giant magnetic anisotropic field of
up to 210 kOe, making them an interesting material system for emerging
spintronics and terahertz modulator applications
An effective ant-colony based routing algorithm for mobile ad-hoc network
An effective Ant-Colony based routing algorithm for mobile ad-hoc network is proposed in this paper. In this routing scheme, each path is marked by path grade, which is calculated from the combination of multiple constrained QoS parameters such as the time delay, packet loss rate and bandwidth, etc. packet routing is decided by the path grade and the queue buffer length of the node. The advantage of this scheme is that it can effectively improve the packet delivery ratio and reduce the end-to-end delay. The simulation results show that our proposed algorithm can improve the packet delivery ratio by 9%-22% and the end-to-end delay can be reduced by 14%-16% as compared with the conventional QAODV and ARA routing schemes
- …