70,704 research outputs found

    Numerical simulations of negative-index refraction in wedge-shaped metamaterials

    Full text link
    A wedge-shaped structure made of split-ring resonators (SRR) and wires is numerically simulated to evaluate its refraction behavior. Four frequency bands, namely, the stop band, left-handed band, ultralow-index band, and positive-index band, are distinguished according to the refracted field distributions. Negative phase velocity inside the wedge is demonstrated in the left-handed band and the Snell's law is conformed in terms of its refraction behaviors in different frequency bands. Our results confirmed that negative index of refraction indeed exists in such a composite metamaterial and also provided a convincing support to the results of previous Snell's law experiments.Comment: 18 pages, 6 figure

    Controlling the superconducting transition by spin-orbit coupling

    Get PDF
    Whereas there exists considerable evidence for the conversion of singlet Cooper pairs into triplet Cooper pairs in the presence of inhomogeneous magnetic fields, recent theoretical proposals have suggested an alternative way to exert control over triplet generation: intrinsic spin-orbit coupling in a homogeneous ferromagnet coupled to a superconductor. Here, we proximity-couple Nb to an asymmetric Pt/Co/Pt trilayer, which acts as an effective spin-orbit coupled ferromagnet owing to structural inversion asymmetry. Unconventional modulation of the superconducting critical temperature as a function of in-plane and out-of- plane applied magnetic fields suggests the presence of triplets that can be controlled by the magnetic orientation of a single homogeneous ferromagnet. Our studies demonstrate for the first time an active role of spin-orbit coupling in controlling the triplets -- an important step towards the realization of novel superconducting spintronic devices.Comment: 11 pages + 4 figures + supplemental informatio

    Current-Induced Polarization and the Spin Hall Effect at Room Temperature

    Full text link
    Electrically-induced electron spin polarization is imaged in n-type ZnSe epilayers using Kerr rotation spectroscopy. Despite no evidence for an electrically-induced internal magnetic field, current-induced in-plane spin polarization is observed with characteristic spin lifetimes that decrease with doping density. The spin Hall effect is also observed, indicated by an electrically-induced out-of-plane spin polarization with opposite sign for spins accumulating on opposite edges of the sample. The spin Hall conductivity is estimated as 3 +/- 1.5 Ohms**-1 m**-1/|e| at 20 K, which is consistent with the extrinsic mechanism. Both the current-induced spin polarization and the spin Hall effect are observed at temperatures from 10 K to 295 K.Comment: 5 pages, 4 figure

    Variable - temperature scanning optical and force microscope

    Get PDF
    The implementation of a scanning microscope capable of working in confocal, atomic force and apertureless near field configurations is presented. The microscope is designed to operate in the temperature range 4 - 300 K, using conventional helium flow cryostats. In AFM mode, the distance between the sample and an etched tungsten tip is controlled by a self - sensing piezoelectric tuning fork. The vertical position of both the AFM head and microscope objective can be accurately controlled using piezoelectric coarse approach motors. The scanning is performed using a compact XYZ stage, while the AFM and optical head are kept fixed, allowing scanning probe and optical measurements to be acquired simultaneously and in concert. The free optical axis of the microscope enables both reflection and transmission experiments to be performed.Comment: 24 pages, 9 figures, submitted to the journal "Review of Scientific Instruments

    Internal magnetic fields in thin ZnSe epilayers

    Full text link
    Strain induced spin-splitting is observed and characterized using pump-probe Kerr rotation spectroscopy in n-ZnSe epilayers grown on GaAs substrates. The spin-splitting energies are mapped out as a function of pump-probe separation, applied voltage, and temperature in a series of samples of varying epilayer thicknesses and compressive strain arising from epilayer-substrate lattice mismatch. The strain is independently quantified using photoluminescence and x-ray diffraction measurements. We observe that the magnitude of the spin splitting increases with applied voltage and temperature, and is highly crystal direction dependent, vanishing along [1 1-bar 0].Comment: 9 pages, 3 figure

    A study of the parity-odd nucleon-nucleon potential

    Full text link
    We investigate the parity-violating nucleon-nucleon potential as obtained in chiral effective field theory. By using resonance saturation we compare the chiral potential to the more traditional one-meson exchange potential. In particular, we show how parameters appearing in the different approaches can be compared with each other and demonstrate that analyses of parity violation in proton-proton scattering within the different approaches are in good agreement. In the second part of this work, we extend the parity-violating potential to next-to-next-to-leading order. We show that generally it includes both one-pion- and two-pion-exchange corrections, but the former play no significant role. The two-pion-exchange corrections depend on five new low-energy constants which only become important if the leading-order weak pion-nucleon constant hπh_\pi turns out to be very small.Comment: Published versio

    Angular Dependence of the Superconducting Transition Temperature in Ferromagnet-Superconductor-Ferromagnet Trilayers

    Full text link
    The superconducting transition temperature, TcT_c, of a ferromagnet (F) - superconductor (S) - ferromagnet trilayer depends on the mutual orientation of the magnetic moments of the F layers. This effect has been previously observed in F/S/F systems as a TcT_c difference between parallel and antiparallel configurations of the F layers. Here we report measurements of TcT_c in CuNi/Nb/CuNi trilayers as a function of the angle between the magnetic moments of the CuNi ferromagnets. The observed angular dependence of TcT_c is in qualitative agreement with a F/S proximity theory that accounts for the odd triplet component of the condensate predicted to arise for non-collinear orientation of the magnetic moments of the F layers.Comment: 4 + \epsilon pages including 4 figures. To appear in Phys. Rev. Let
    • …
    corecore