127,914 research outputs found

    Spin-dependent Fano resonance induced by conducting chiral helimagnet contained in a quasi-one-dimensional electron waveguide

    Full text link
    Fano resonance appears for conduction through an electron waveguide containing donor impurities. In this work, we consider the thin-film conducting chiral helimagnet (CCH) as the donor impurity in a one-dimensional waveguide model. Due to the spin spiral coupling, interference between the direct and intersubband transmission channels gives rise to spin-dependent Fano resonance effect. The spin-dependent Fano resonance is sensitively dependent on the helicity of the spiral. By tuning the CCH potential well depth and the incident energy, this provides a potential way to detect the spin structure in the CCH.Comment: 14 pages, 6 figure

    On the spectral distribution of kernel matrices related to\ud radial basis functions

    Get PDF
    This paper focuses on the spectral distribution of kernel matrices related to radial basis functions. The asymptotic behaviour of eigenvalues of kernel matrices related to radial basis functions with different smoothness are studied. These results are obtained by estimated the coefficients of an orthogonal expansion of the underlying kernel function. Beside many other results, we prove that there are exactly (k+d−1/d-1) eigenvalues in the same order for analytic separable kernel functions like the Gaussian in Rd. This gives theoretical support for how to choose the diagonal scaling matrix in the RBF-QR method (Fornberg et al, SIAM J. Sci. Comput. (33), 2011) which can stably compute Gaussian radial basis function interpolants

    Vibrating Superconducting Island in a Josephson Junction

    Full text link
    We consider a combined nanomechanical-supercondcuting device that allows the Cooper pair tunneling to interfere with the mechanical motion of the middle superconducting island. Coupling of mechanical oscillations of a superconducting island between two superconducting leads to the electronic tunneling generate a supercurrent which is modulated by the oscillatory motion of the island. This coupling produces alternating finite and vanishing supercurrent as function of the superconducting phases. Current peaks are sensitive to the superconducting phase shifts relative to each other. The proposed device may be used to study the nanoelectromechanical coupling in case of superconducting electronics.Comment: 4 pages, 3 figures, to appear in Phys. Rev. Let

    Quantum interference in nested d-wave superconductors: a real-space perspective

    Full text link
    We study the local density of states around potential scatterers in d-wave superconductors, and show that quantum interference between impurity states is not negligible for experimentally relevant impurity concentrations. The two impurity model is used as a paradigm to understand these effects analytically and in interpreting numerical solutions of the Bogoliubov-de Gennes equations on fully disordered systems. We focus primarily on the globally particle-hole symmetric model which has been the subject of considerable controversy, and give evidence that a zero-energy delta function exists in the DOS. The anomalous spectral weight at zero energy is seen to arise from resonant impurity states belonging to a particular sublattice, exactly as in the 2-impurity version of this model. We discuss the implications of these findings for realistic models of the cuprates.Comment: 12 pages, 10 figs, submitted to Phys. Rev.

    Two impurities in a d-wave superconductor:local density of states

    Full text link
    We study the problem of two local potential scatterers in a d-wave superconductor, and show how quasiparticle bound state wave functions interfere. Each single-impurity electron and hole resonance energy is in general split in the presence of a second impurity into two, corresponding to one even parity and one odd parity state. We calculate the local density of states (LDOS), and argue that scanning tunneling microscopy (STM) measurements should be capable of extracting information about the Green's function in the pure system by a systematic study of 2-impurity configurations. In some configurations highly localized, long-lived states are predicted. We discuss the effects of realistic band structures, and how 2-impurity STM measurements could help distinguish between current explanations of LDOS impurity spectra in the BSCCO-2212 system.Comment: 16 pages,21 figure,New Version to be Published on P.R.

    Frequency comb vernier spectroscopy in the near infrared

    Full text link
    We perform femtosecond frequency comb vernier spectroscopy in the near infrared with a femtosecond Er doped fiber laser, a scanning high-finesse cavity and an InGaAs camera. By utilizing the properties of a frequency comb and a scanning high-finesse cavity such spectroscopy provides broad spectral bandwidth, high spectral resolution, and high detection sensitivity on a short time scale. We achieved an absorption sensitivity of ~8E-8 cm-1Hz-1/2 corresponding to a detection limit of ~70 ppbv for acetylene, with a resolution of ~1.1 GHz in single images taken in 0.5 seconds and covering a frequency range of ~5 THz. These measurements have broad applications for sensing other greenhouse gases in this fingerprint near IR region with a simple apparatus.Comment: 14 pages, 5 figure

    Controlling the superconducting transition by spin-orbit coupling

    Get PDF
    Whereas there exists considerable evidence for the conversion of singlet Cooper pairs into triplet Cooper pairs in the presence of inhomogeneous magnetic fields, recent theoretical proposals have suggested an alternative way to exert control over triplet generation: intrinsic spin-orbit coupling in a homogeneous ferromagnet coupled to a superconductor. Here, we proximity-couple Nb to an asymmetric Pt/Co/Pt trilayer, which acts as an effective spin-orbit coupled ferromagnet owing to structural inversion asymmetry. Unconventional modulation of the superconducting critical temperature as a function of in-plane and out-of- plane applied magnetic fields suggests the presence of triplets that can be controlled by the magnetic orientation of a single homogeneous ferromagnet. Our studies demonstrate for the first time an active role of spin-orbit coupling in controlling the triplets -- an important step towards the realization of novel superconducting spintronic devices.Comment: 11 pages + 4 figures + supplemental informatio
    • …
    corecore