71 research outputs found

    A Multi-scale Approach to Investigating the Wintering Habitat Selection of Red-crowned Cranes in the Yancheng Nature Reserve, China

    Get PDF
    A B S T R A C T The red-crowned crane (Grus japonensis) is a rare and endangered species that lives in wetland habitats. In this study, we first compared crane habitat selection in December, 2013 and January, 2014 using the Neu method in the Yancheng National Reserve (YNR). We then explored the relative importance of habitats (plot, landscape) and spatial factors on red-crowned crane abundance at multiple scales using regression models and variation partitioning approaches. Our results indicated that seepweed (Suaeda salsa) tidal flats and reed ponds were the favored habitats by cranes in December and January, respectively. The variation partitioning results indicated that plot and landscape factors were the determining factors of crane abundance in December, but plot features were more important in January. Furthermore, the pure and total effects of plot factors, and the combined effects of plot, landscape and spatial factors, increased significantly from December to January. At plot scale, vegetation coverage and road distance were the crucial variables that determine crane abundance in both months. At landscape scale, percentage of reed ponds and percentage of seepweed tidal flats showed a positive independent effect on crane abundance in both months. Percentage of paddy fields was also a significant variable in December, whereas percentage of fishponds was in January. Our study indicated that crane habitat selection and the determining factors changed over time due to food availability and human disturbance (e.g., reed pond and fishpond harvests). Our results encourage the application of partitioning methods in avian ecology because they provide a more in-depth understanding of the importance of different explanatory variables over traditional regression methods. Efforts should be made to strengthen wetland restoration and improve the mitigation of human disturbance in the YNR

    Influence of Crystal Structure on the Electrochemical Performance of A-Site-Deficient Sr 1-xNb 0.1 Co 0.9 O 3-δ Perovskite Cathodes

    Get PDF
    The creation of A-site cation defects within a perovskite oxide can substantially alter the structure and properties of its stoichiometric analogue. In this work, we demonstrate that by vacating 2 and 5% of A-site cations from SrNb0.1Co0.9O3−δ (SNC1.00) perovskites (Sr1−sNb0.1Co0.9O3−δ, s = 0.02 and 0.05; denoted as SNC0.98 and SNC0.95, respectively), a Jahn–Teller (JT) distortion with varying extents takes place, leading to the formation of a modified crystal lattice within a the perovskite framework. Electrical conductivity, electrochemical performance, chemical compatibility and microstructure of Sr1−sNb0.1Co0.9O3−δ as cathodes for solid oxide fuel cells were evaluated. Among SNC1.00, SNC0.98 and SNC0.95, SNC0.95 (P4/mmm symmetry (#123)) which exhibits a large JT distortion in conjunction with charge-ordering of cobalt (Co) shows the best oxygen reduction reaction (ORR) activity at low temperature while SNC0.98 (P4mm symmetry (#99)), which displays a local JT distortion, shows the poorest performance

    Influence of Crystal Structure on the Electrochemical Performance of A-Site-Deficient Sr\u3csub\u3e1-s\u3c/sub\u3eNb\u3csub\u3e0.1\u3c/sub\u3eCo\u3csub\u3e0.9\u3c/sub\u3eO\u3csub\u3e3-δ\u3c/sub\u3e Perovskite Cathodes

    Get PDF
    The creation of A-site cation defects within a perovskite oxide can substantially alter the structure and properties of its stoichiometric analogue. In this work, we demonstrate that by vacating 2 and 5% of Asite cations from SrNb0.1Co0.9O3-δ (SNC1.00) perovskites (Sr1-sNb0.1Co0.9O3-δ,s = 0.02 and 0.05; denoted as SNC0.98 and SNC0.95, respectively), a Jahn–Teller (JT) distortion with varying extents takes place, leading to the formation of a modified crystal lattice within a the perovskite framework. Electrical conductivity, electrochemical performance, chemical compatibility and microstructure of Sr1-sNb0.1Co0.9O3-δ as cathodes for solid oxide fuel cells were evaluated. Among SNC1.00, SNC0.98 and SNC0.95, SNC0.95 (P4/mmm symmetry (#123)) which exhibits a large JT distortion in conjunction with charge-ordering of cobalt (Co) shows the best oxygen reduction reaction (ORR) activity at low temperature while SNC0.98 (P4mm symmetry (#99)), which displays a local JT distortion, shows the poorest performance

    Boosting oxygen evolution reaction by activation of lattice‐oxygen sites in layered Ruddlesden‐Popper oxide

    Get PDF
    Emerging anionic redox chemistry presents new opportunities for enhancing oxygen evolution reaction (OER) activity considering that lattice-oxygen oxidation mechanism (LOM) could bypass thermodynamic limitation of conventional metal-ion participation mechanism. Thus, finding an effective method to activate lattice-oxygen in metal oxides is highly attractive for designing efficient OER electrocatalysts. Here, we discover that the lattice-oxygen sites in Ruddlesden-Popper (RP) crystal structure can be activated, leading to a new class of extremely active OER catalyst. As a proof-of-concept, the RP Sr3(Co0.8Fe0.1Nb0.1)2O7-δ (RP-SCFN) oxide exhibits outstanding OER activity (eg, 334 mV at 10 mA cm−2 in 0.1 M KOH), which is significantly higher than that of the simple SrCo0.8Fe0.1Nb0.1O3-δ perovskite and benchmark RuO2. Combined density functional theory and X-ray absorption spectroscopy studies demonstrate that RP-SCFN follows the LOM under OER condition, and the activated lattice oxygen sites triggered by high covalency of metal-oxygen bonds are the origin of the high catalytic activity.This work was financially supported by the Australian Research Council (Discovery Early Career Researcher Award No. DE190100005)

    Ex Situ Reconstruction-Shaped Ir/CoO/Perovskite Heterojunction for Boosted Water Oxidation Reaction

    Get PDF
    The oxygen evolution reaction (OER) is the performance-limiting step in the process of water splitting. In situ electrochemical conditioning could induce surface reconstruction of various OER electrocatalysts, forming reactive sites dynamically but at the expense of fast cation leaching. Therefore, achieving simultaneous improvement in catalytic activity and stability remains a significant challenge. Herein, we used a scalable cation deficiency-driven exsolution approach to ex situ reconstruct a homogeneous-doped cobaltate precursor into an Ir/CoO/perovskite heterojunction (SCI-350), which served as an active and stable OER electrode. The SCI-350 catalyst exhibited a low overpotential of 240 mV at 10 mA cm-2 in 1 M KOH and superior durability in practical electrolysis for over 150 h. The outstanding activity is preliminarily attributed to the exponentially enlarged electrochemical surface area for charge accumulation, increasing from 3.3 to 175.5 mF cm-2. Moreover, density functional theory calculations combined with advanced spectroscopy and 18O isotope-labeling experiments evidenced the tripled oxygen exchange kinetics, strengthened metal-oxygen hybridization, and engaged lattice oxygen oxidation for O-O coupling on SCI-350. This work presents a promising and feasible strategy for constructing highly active oxide OER electrocatalysts without sacrificing durability

    The oyster genome reveals stress adaptation and complexity of shell formation

    Get PDF
    The Pacific oyster Crassostrea gigas belongs to one of the most species-rich but genomically poorly explored phyla, the Mollusca. Here we report the sequencing and assembly of the oyster genome using short reads and a fosmid-pooling strategy, along with transcriptomes of development and stress response and the proteome of the shell. The oyster genome is highly polymorphic and rich in repetitive sequences, with some transposable elements still actively shaping variation. Transcriptome studies reveal an extensive set of genes responding to environmental stress. The expansion of genes coding for heat shock protein 70 and inhibitors of apoptosis is probably central to the oyster's adaptation to sessile life in the highly stressful intertidal zone. Our analyses also show that shell formation in molluscs is more complex than currently understood and involves extensive participation of cells and their exosomes. The oyster genome sequence fills a void in our understanding of the Lophotrochozoa. Š 2012 Macmillan Publishers Limited. All rights reserved

    Tuning Reconstruction Level of Precatalysts to Design Advanced Oxygen Evolution Electrocatalysts

    No full text
    Surface reconstruction engineering is an effective strategy to promote the catalytic activities of electrocatalysts, especially for water oxidation. Taking advantage of the physicochemical properties of precatalysts by manipulating their structural self-reconstruction levels provide a promising methodology for achieving suitable catalysts. In this review, we focus on recent advances in research related to the rational control of the process and level of surface transformation ultimately to design advanced oxygen evolution electrocatalysts. We start by discussing the original contributions to surface changes during electrochemical reactions and related factors that can influence the electrocatalytic properties of materials. We then present an overview of current developments and a summary of recently proposed strategies to boost electrochemical performance outcomes by the controlling structural self-reconstruction process. By conveying these insights, processes, general trends, and challenges, this review will further our understanding of surface reconstruction processes and facilitate the development of high-performance electrocatalysts beyond water oxidation

    Integration of Porous Carbon Nanowrinkles into Carbon Micropost Array for Microsupercapacitors

    No full text
    Porous carbon nanowrinkles (PCW) coated on carbon micropost (CMP) arrays were successfully fabricated via three-step process, which took advantages of the large difference in elastic moduli between PCW and the raw material of CMP. The effect of nanowrinkle integration on the electrochemical performances was investigated, showing an improved electrochemical performance. The electrode also shows excellent cycling stability, which retains 84% of its initial discharge capacitance after 1700 cycles with >90% Coulombic efficiency. This enhanced electrochemical performance is ascribed to the synergistic effect of enlarged surface area and porous structure of PCW. The obtained PCW/CMP compositing electrode with the advantages of low cost and easy scaling-up has great potential for on-chip supercapacitors
    • …
    corecore