9,234 research outputs found

    Where to Display What? Using AR to Improve Work Performance

    Get PDF
    Augmented reality (AR) is emerging as a next-generation interactive technology with the ability to display information in the immediate field of vision (i.e., near-eye display). This study investigates the interplay between information provision channels and information types on worker performance. A field experiment reveals that workers who follow instructions shown on AR glasses achieve higher work attentiveness and work performance than workers who receive this information on a mobile phone. Moreover, the effects of AR on work performance are moderated by information type. When the instructional information is highly dependent on the physical context, AR is more helpful in improving work performance. However, when the information is highly complex, the superiority of AR is weakened. This work contributes to the IS and HCI literature by revealing the value of AR in industrial organizations, and the boundary conditions for which AR affects worker performance

    Asymptotic correlation functions and FFLO signature for the one-dimensional attractive Hubbard model

    Full text link
    We study the long-distance asymptotic behavior of various correlation functions for the one-dimensional (1D) attractive Hubbard model in a partially polarized phase through the Bethe ansatz and conformal field theory approaches. We particularly find the oscillating behavior of these correlation functions with spatial power-law decay, of which the pair (spin) correlation function oscillates with a frequency ΔkF\Delta k_F (2ΔkF2\Delta k_F). Here ΔkF=π(n↑−n↓)\Delta k_F=\pi(n_\uparrow-n_\downarrow) is the mismatch in the Fermi surfaces of spin-up and spin-down particles. Consequently, the pair correlation function in momentum space has peaks at the mismatch k=ΔkFk=\Delta k_F, which has been observed in recent numerical work on this model. These singular peaks in momentum space together with the spatial oscillation suggest an analog of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in the 1D Hubbard model. The parameter β\beta representing the lattice effect becomes prominent in critical exponents which determine the power-law decay of all correlation functions. We point out that the backscattering of unpaired fermions and bound pairs within their own Fermi points gives a microscopic origin of the FFLO pairing in 1D.Comment: 26 pages, 4 figures, published version, a series of study on the 1D attractive Hubbard model, few typos were corrected, references were added, also see arXiv:1708.07784 and arXiv:1708.0777

    The Nullity of Bicyclic Signed Graphs

    Full text link
    Let \Gamma be a signed graph and let A(\Gamma) be the adjacency matrix of \Gamma. The nullity of \Gamma is the multiplicity of eigenvalue zero in the spectrum of A(\Gamma). In this paper we characterize the signed graphs of order n with nullity n-2 or n-3, and introduce a graph transformation which preserves the nullity. As an application we determine the unbalanced bicyclic signed graphs of order n with nullity n-3 or n-4, and signed bicyclic signed graphs (including simple bicyclic graphs) of order n with nullity n-5

    Randomly Generating the 3D Mesostructure of Soil Rock Mixtures Based on the Full In Situ Digital Image Processed Information

    Get PDF
    Understanding the occurrence and evolution of geological disasters, such as landslides and debris flows, is facilitated by research on the performance of soil rock mixes (SRM). Recently, more and more researchers have been interested in studying the mesostructure reconstruction process of SRM. The present mesostructure generation approaches, however, have several weaknesses. One of the weaknesses is that they do not consider the impact of particle shape and therefore cannot ensure similarity to the in situ SRMs. In this study, a new mesostructure generation method that randomly generates SRMs based on the full in situ digital image processing (DIP) information is proposed. The generation procedure of the proposed algorithm considers the geometry characteristics of in situ SRMs, including the size distribution, particle shape, and 2D fractal dimension of the cross-section. A parametric study was performed to examine how the rock content and particle shape affected the fractal dimension of the generated SRMs. The results indicate that as the rock content increases in intensity, the fractal dimension also increases. Only when the angular particle content is less than 75% does it affect the fractal dimension. The fractal dimension of the generated mesostructures increases with the increase in the angular particle proportion under the same rock content

    Ultrathin Acoustic Parity-Time Symmetric Metasurface Cloak

    Get PDF
    Invisibility or unhearability cloaks have beenmade possible by using metamaterials enabling light or sound to flow around obstacle without the trace of reflections or shadows. Metamaterials are known for being flexible building units that can mimic a host of unusual and extreme material responses, which are essential when engineering artificial material properties to realize a coordinate transforming cloak. Bending and stretching the coordinate grid in space require stringent material parameters; therefore, small inaccuracies and inevitablematerial losses become sources for unwanted scattering that are decremental to the desired effect.These obstacles further limit the possibility of achieving a robust concealment of sizeable objects from either radar or sonar detection. By using an elaborate arrangement of gain and lossy acousticmedia respecting parity-time symmetry, we built a one-way unhearability cloak able to hide objects seven times larger than the acoustic wavelength. Generally speaking, our approach has no limits in terms of working frequency, shape, or size, specifically though we demonstrate how, in principle, an object of the size of a human can be hidden from audible sound

    Dynamics of social contagions with limited contact capacity

    Get PDF
    Individuals are always limited by some inelastic resources, such as time and energy, which restrict them to dedicate to social interaction and limit their contact capacities. Contact capacity plays an important role in dynamics of social contagions, which so far has eluded theoretical analysis. In this paper, we first propose a non-Markovian model to understand the effects of contact capacity on social contagions, in which each adopted individual can only contact and transmit the information to a finite number of neighbors. We then develop a heterogeneous edge-based compartmental theory for this model, and a remarkable agreement with simulations is obtained. Through theory and simulations, we find that enlarging the contact capacity makes the network more fragile to behavior spreading. Interestingly, we find that both the continuous and discontinuous dependence of the final adoption size on the information transmission probability can arise. There is a crossover phenomenon between the two types of dependence. More specifically, the crossover phenomenon can be induced by enlarging the contact capacity only when the degree exponent is above a critical degree exponent, while the final behavior adoption size always grows continuously for any contact capacity when degree exponent is below the critical degree exponent
    • …
    corecore