100 research outputs found

    Progression of Electrocardiographic Abnormalities in Type 1 Diabetes During 16 Years of Follow‐up: The Epidemiology of Diabetes Interventions and Complications (EDIC) Study

    Get PDF
    Background The electrocardiogram (ECG) is an objective tool for cardiovascular disease (CVD) risk assessment. Methods and Results We evaluated distribution of ECG abnormalities and risk factors for developing new abnormalities in 1314 patients with type 1 diabetes (T1D) from the Epidemiology of Diabetes Interventions and Complications (EDIC) study. Annual ECGs were centrally read. ECG abnormalities were classified as major and minor according to the Minnesota ECG Classification. At EDIC year 1 (baseline), 356 (27.1%) of the participants had at least 1 ECG abnormality (major or minor) whereas 26 (2%) had at least one major abnormality. During 16 years of follow‐up, 1016 (77.3%) participants developed at least 1 new ECG abnormality (major or minor), whereas 172 (13.1%) developed at least 1 new major abnormality. Independent risk factors for developing new major ECG abnormalities were: age, current smoking, increased systolic blood pressure, and higher glycosylated hemoglobin (hazard ratio [HR] [95% CI]: 1.04 [1.02–1.06] per 1‐year increase, 1.75 [1.22–2.53], 1.03 [1.01–1.05] per 1 mm Hg increase, and 1.16 [1.04–1.29] per 10% increase, respectively). Independent risk factors for developing any new ECG abnormalities (major or minor) were age and systolic blood pressure (HR [95% CI]: 1.02 [1.01–1.03] per 1‐year increase and 1.01 [1.00–1.02] per 1 mm Hg increase, respectively). Conclusions New ECG abnormalities commonly occur in the course of T1D, consistent with the recognized increasing risk for CVD as patients age. Advanced age, increased systolic blood pressure, smoking, and higher HbA1c are independent risk factor for developing major ECG abnormalities, which underscores the importance of tight glucose control in T1D in addition to management of common CVD risk factors

    Perovskite Solar Cells—Towards Commercialization

    Get PDF
    The Symposium ES1, Perovskite Solar Cells—Towards Commercialization, held at the 2017 Materials Research Society (MRS) Spring Meeting in Phoenix, Arizona (April 17–21, 2017) received ∼200 abstracts. The 23 invited talks and 72 contributed oral presentations as well as 3 poster presentation sessions were organized into 13 principal themes according to the contents of the received abstracts. This Energy Focus article provides a concise summary of the opinions from the scientists and engineers who participated in this symposium regarding the recent progresses, challenges, and future directions for perovskite solar cells as well as other optoelectronic devices

    Targeting PELP1 Attenuates Angiogenesis and Enhances Chemotherapy Efficiency in Colorectal Cancer

    Get PDF
    SIMPLE SUMMARY: Excessive angiogenesis is a distinct feature of colorectal cancer (CRC) and plays a pivotal role in tumor development and metastasis. Therefore, it is essential to clarify the underlying mechanism of angiogenesis. In this study, we found that the level of proline-, glutamic acid, and leucine-rich protein 1 (PELP1) was positively correlated with microvessel density (MVD). In vitro and in vivo assays further showed PELP1 regulated angiogenesis via the Signal transducer and activator of transcription 3 (STAT3)/Vascular endothelial growth factor (VEGFA). Notably, we found that inhibition of PELP1 enhanced the efficacy of chemotherapy due to vascular normalization. Thus, targeting of PELP1 may be a potentially therapeutic strategy for CRC. ABSTRACT: Abnormal angiogenesis is one of the important hallmarks of colorectal cancer as well as other solid tumors. Optimally, anti-angiogenesis therapy could restrain malignant angiogenesis to control tumor expansion. PELP1 is as a scaffolding oncogenic protein in a variety of cancer types, but its involvement in angiogenesis is unknown. In this study, PELP1 was found to be abnormally upregulated and highly coincidental with increased MVD in CRC. Further, treatment with conditioned medium (CM) from PELP1 knockdown CRC cells remarkably arrested the function of human umbilical vein endothelial cells (HUVECs) compared to those treated with CM from wildtype cells. Mechanistically, the STAT3/VEGFA axis was found to mediate PELP1-induced angiogenetic phenotypes of HUVECs. Moreover, suppression of PELP1 reduced tumor growth and angiogenesis in vivo accompanied by inactivation of STAT3/VEGFA pathway. Notably, in vivo, PELP1 suppression could enhance the efficacy of chemotherapy, which is caused by the normalization of vessels. Collectively, our findings provide a preclinical proof of concept that targeting PELP1 to decrease STAT3/VEGFA-mediated angiogenesis and improve responses to chemotherapy due to normalization of vessels. Given the newly defined contribution to angiogenesis of PELP1, targeting PELP1 may be a potentially ideal therapeutic strategy for CRC as well as other solid tumors

    Tislelizumab vs Sorafenib as First-Line Treatment for Unresectable Hepatocellular Carcinoma: A Phase 3 Randomized Clinical Trial

    Get PDF
    Importance: Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality, and additional first-line treatments are needed. The programmed cell death protein 1 inhibitor tislelizumab demonstrated efficacy and a tolerable safety profile as second-line HCC treatment. // Objective: To investigate efficacy and safety of tislelizumab vs sorafenib tosylate for first-line treatment of unresectable HCC. // Design, Setting, and Participants: The open-label, global, multiregional phase 3 RATIONALE-301 randomized clinical trial enrolled systemic therapy–naive adults with histologically confirmed HCC, Barcelona Clinic Liver Cancer stage B or C disease, disease progression following (or patient was not amenable to) locoregional therapy, Eastern Cooperative Oncology Group performance status of 1 or less, and Child-Pugh class A, between December 27, 2017, and October 2, 2019. Data cutoff was July 11, 2022. // Intervention: Patients were randomized 1:1 to receive tislelizumab, 200 mg intravenously every 3 weeks, or sorafenib tosylate, 400 mg orally twice daily. // Main Outcomes and Measures: The primary end point was overall survival (OS); secondary end points included objective response rate, progression-free survival, duration of response, and safety. // Results: A total of 674 patients were included in the analysis (570 men [84.6%]; median age, 61 years [range, 23-86 years]). As of July 11, 2022, minimum study follow-up was 33 months. The primary end point of OS noninferiority of tislelizumab vs sorafenib was met in the intention-to-treat population (n = 674); median overall survival was 15.9 (95% CI, 13.2-19.7) months vs 14.1 (95% CI, 12.6-17.4) months, respectively (hazard ratio [HR], 0.85 [95.003% CI, 0.71-1.02]), and superiority of tislelizumab vs sorafenib was not met. The objective response rate was 14.3% (n = 49) for tislelizumab vs 5.4% (n = 18) for sorafenib, and median duration of response was 36.1 (95% CI, 16.8 to not evaluable) months vs 11.0 (95% CI, 6.2-14.7) months, respectively. Median progression-free survival was 2.1 (95% CI, 2.1-3.5) months vs 3.4 (95% CI, 2.2-4.1) months with tislelizumab vs sorafenib (HR, 1.11 [95% CI, 0.92-1.33]). The incidence of treatment-emergent adverse events (AEs) was 96.2% (325 of 338 patients) for tislelizumab and 100% (n = 324) for sorafenib. Grade 3 or greater treatment-related AEs were reported in 75 patients (22.2%) receiving tislelizumab and 173 (53.4%) receiving sorafenib. There was a lower incidence of treatment-related AEs leading to drug discontinuation (21 [6.2%] vs 33 [10.2%]) and drug modification (68 [20.1%] vs 187 [57.7%]) with tislelizumab vs sorafenib. // Conclusions and Relevance: In RATIONALE-301, tislelizumab demonstrated OS benefit that was noninferior vs sorafenib, with a higher objective response rate and more durable responses, while median progression-free survival was longer with sorafenib. Tislelizumab demonstrated a favorable safety profile vs sorafenib. // Trial Registration: ClinicalTrials.gov Identifier: NCT0341277

    Outbred genome sequencing and CRISPR/Cas9 gene editing in butterflies

    Get PDF
    Butterflies are exceptionally diverse but their potential as an experimental system has been limited by the difficulty of deciphering heterozygous genomes and a lack of genetic manipulation technology. Here we use a hybrid assembly approach to construct high-quality reference genomes for Papilio xuthus (contig and scaffold N50: 492 kb, 3.4 Mb) and Papilio machaon (contig and scaffold N50: 81 kb, 1.15 Mb), highly heterozygous species that differ in host plant affiliations, and adult and larval colour patterns. Integrating comparative genomics and analyses of gene expression yields multiple insights into butterfly evolution, including potential roles of specific genes in recent diversification. To functionally test gene function, we develop an efficient (up to 92.5%) CRISPR/Cas9 gene editing method that yields obvious phenotypes with three genes, Abdominal-B, ebony and frizzled. Our results provide valuable genomic and technological resources for butterflies and unlock their potential as a genetic model system

    Regulatory controls of duplicated gene expression during fiber development in allotetraploid cotton.

    Get PDF
    Polyploidy complicates transcriptional regulation and increases phenotypic diversity in organisms. The dynamics of genetic regulation of gene expression between coresident subgenomes in polyploids remains to be understood. Here we document the genetic regulation of fiber development in allotetraploid cotton Gossypium hirsutum by sequencing 376 genomes and 2,215 time-series transcriptomes. We characterize 1,258 genes comprising 36 genetic modules that control staged fiber development and uncover genetic components governing their partitioned expression relative to subgenomic duplicated genes (homoeologs). Only about 30% of fiber quality-related homoeologs show phenotypically favorable allele aggregation in cultivars, highlighting the potential for subgenome additivity in fiber improvement. We envision a genome-enabled breeding strategy, with particular attention to 48 favorable alleles related to fiber phenotypes that have been subjected to purifying selection during domestication. Our work delineates the dynamics of gene regulation during fiber development and highlights the potential of subgenomic coordination underpinning phenotypes in polyploid plants. [Abstract copyright: © 2023. The Author(s).

    Transcriptome Sequences Resolve Deep Relationships of the Grape Family

    Get PDF
    Previous phylogenetic studies of the grape family (Vitaceae) yielded poorly resolved deep relationships, thus impeding our understanding of the evolution of the family. Next-generation sequencing now offers access to protein coding sequences very easily, quickly and cost-effectively. To improve upon earlier work, we extracted 417 orthologous single-copy nuclear genes from the transcriptomes of 15 species of the Vitaceae, covering its phylogenetic diversity. The resulting transcriptome phylogeny provides robust support for the deep relationships, showing the phylogenetic utility of transcriptome data for plants over a time scale at least since the mid-Cretaceous. The pros and cons of transcriptome data for phylogenetic inference in plants are also evaluated

    The oyster genome reveals stress adaptation and complexity of shell formation

    Get PDF
    The Pacific oyster Crassostrea gigas belongs to one of the most species-rich but genomically poorly explored phyla, the Mollusca. Here we report the sequencing and assembly of the oyster genome using short reads and a fosmid-pooling strategy, along with transcriptomes of development and stress response and the proteome of the shell. The oyster genome is highly polymorphic and rich in repetitive sequences, with some transposable elements still actively shaping variation. Transcriptome studies reveal an extensive set of genes responding to environmental stress. The expansion of genes coding for heat shock protein 70 and inhibitors of apoptosis is probably central to the oyster's adaptation to sessile life in the highly stressful intertidal zone. Our analyses also show that shell formation in molluscs is more complex than currently understood and involves extensive participation of cells and their exosomes. The oyster genome sequence fills a void in our understanding of the Lophotrochozoa. © 2012 Macmillan Publishers Limited. All rights reserved
    corecore