154 research outputs found

    Comparative Analysis of Clinical Epidemiology and Pathological Characteristics of 908 Patients with Primary Lung Cancer of Hunan Province in 1997 and 2007

    Get PDF
    Background and objective Epidemiology of lung cancer will be changed along with time and region. The aim of this study is to acknowledge the tendency of primary lung cancer in hunan province in recent years by comparing and analyzing the distribution of gender, age, area, smoking and pathology of patients who were initial diagnosed lung cancer and ancestral or permanent residence of hunan province in 1997 and 2007. Methods Clinical data of 908 patients with primary lung cancer hospitalized in Xiangya hospital were collected and evaluated. Results Compared patients in 2007 with those in 1997, ratio between male and female dropped from 3.8:1 to 2.98:1, while the proportion of young patients who were under 40 years old raised from 4.4% to 8.6% (χ2=4.465, P=0.035), patients living in the county raised from 19.9% to 40.1% (χ2=30.670, P < 0.001), smoking rate of patients from county raised from 16.9% to 39.9% (χ2= 24.939, P < 0.01). In addition, the proportion of rare histological types of lung cancer were also increased from 1.3% to 4.5% (χ2= 5.142, P=0.023). Conclusion Female patients, young patients, rural patients and rare histological types of lung cancer may have a tendency of increase in hunan province in recent years, whereas smoking cessation education should be strengthened

    CG-fusion CAM: Online segmentation of laser-induced damage on large-aperture optics

    Full text link
    Online segmentation of laser-induced damage on large-aperture optics in high-power laser facilities is challenged by complicated damage morphology, uneven illumination and stray light interference. Fully supervised semantic segmentation algorithms have achieved state-of-the-art performance, but rely on plenty of pixel-level labels, which are time-consuming and labor-consuming to produce. LayerCAM, an advanced weakly supervised semantic segmentation algorithm, can generate pixel-accurate results using only image-level labels, but its scattered and partially under-activated class activation regions degrade segmentation performance. In this paper, we propose a weakly supervised semantic segmentation method with Continuous Gradient CAM and its nonlinear multi-scale fusion (CG-fusion CAM). The method redesigns the way of back-propagating gradients and non-linearly activates the multi-scale fused heatmaps to generate more fine-grained class activation maps with appropriate activation degree for different sizes of damage sites. Experiments on our dataset show that the proposed method can achieve segmentation performance comparable to that of fully supervised algorithms

    Integrated radiative and evaporative cooling beyond daytime passive cooling power limit

    Get PDF
    Radiative cooling technologies can passively gain lower temperature than that of ambient surroundings without consuming electricity, which has emerged as potential alternatives to traditional cooling methods. However, the limitations in daytime radiation intensity with a net cooling power of less than 150 W·m−2 have hindered progress toward commercial practicality. Here, we report an integrated radiative and evaporative chiller (IREC) based on polyacrylamide hydrogels combined with an upper layer of breathable poly(vinylidene fluoride-co-trifluoroethylene) fibers, which achieves a record high practical average daytime cooling power of 710 W·m−2. The breathable fiber layer has an average emissivity of over 76% in the atmospheric window, while reflecting 90% of visible light. This IREC possesses effective daytime radiative cooling while simultaneously ensuring evaporative cooling capability, enhancing daytime passive cooling effectively. As a result, IREC presents the practicability for both personal cooling managements and industrial auxiliary cooling applications. An IREC-based patch can assist in cooling human body by 13 °C low for a long term and biocompatible use, and IREC can maintain the temperature of industrial storage facilities such as oil tanks at room temperature even under strong sunlight irradiation. This work delivers the highest performance daytime passive cooling by simultaneous infrared radiation and water evaporation, and provides a new perspective for developing highly efficient, scalable, and affordable passive cooling strategy

    Entanglement of single-photons and chiral phonons in atomically thin WSe2_2

    Full text link
    Quantum entanglement is a fundamental phenomenon which, on the one hand, reveals deep connections between quantum mechanics, gravity and the space-time; on the other hand, has practical applications as a key resource in quantum information processing. While it is routinely achieved in photon-atom ensembles, entanglement involving the solid-state or macroscopic objects remains challenging albeit promising for both fundamental physics and technological applications. Here, we report entanglement between collective, chiral vibrations in two-dimensional (2D) WSe2_2 host --- chiral phonons (CPs) --- and single-photons emitted from quantum dots (QDs) present in it. CPs which carry angular momentum were recently observed in WSe2_2 and are a distinguishing feature of the underlying honeycomb lattice. The entanglement results from a "which-way" scattering process, involving an optical excitation in a QD and doubly-degenerate CPs, which takes place via two indistinguishable paths. Our unveiling of entanglement involving a macroscopic, collective excitation together with strong interaction between CPs and QDs in 2D materials opens up ways for phonon-driven entanglement of QDs and engineering chiral or non-reciprocal interactions at the single-photon level

    A multi-wavelength mid-IR laser based on BaGa4Se7 optical parametric oscillators

    Get PDF
    A multi-wavelength mid-IR laser consisting of 3.05 μm, 4.25 μm, and 5.47 μm BaGa4Se7(BGSe)optical parametric oscillators (OPOs) switched by DKDP electro-optic switches with one 10 Hz/7.6 ns pumping wave is demonstrated. Maximum energies at 3.05 μm, 4.25 μm, and 5.47 μm are 1.35 mJ, 1.03 mJ, and 0.56 mJ, respectively, corresponding to optical-to-optical conversion efficiencies of 9.4%, 7.6%, and 4.2%. To the best of our knowledge, this study is the first of generation of three mid-IR wavelength lasers using electro-optic switches. Furthermore, this study provides a viable solution for a high-energy or high-power, compact, or even portable multi-wavelength mid-IR laser device that employs a single pumping wave

    The genome of cowpea (Vigna unguiculata [L.] Walp.)

    Get PDF
    [EN] Cowpea (Vigna unguiculata [L.] Walp.) is a major crop for worldwide food and nutritional security, especially in sub-Saharan Africa, that is resilient to hot and drought-prone environments. An assembly of the single-haplotype inbred genome of cowpea IT97K-499-35 was developed by exploiting the synergies between single-molecule real-time sequencing, optical and genetic mapping, and an assembly reconciliation algorithm. A total of 519 Mb is included in the assembled sequences. Nearly half of the assembled sequence is composed of repetitive elements, which are enriched within recombination-poor pericentromeric regions. A comparative analysis of these elements suggests that genome size differences between Vigna species are mainly attributable to changes in the amount of Gypsy retrotransposons. Conversely, genes are more abundant in more distal, high-recombination regions of the chromosomes; there appears to be more duplication of genes within the NBS-LRR and the SAUR-like auxin superfamilies compared with other warm-season legumes that have been sequenced. A surprising outcome is the identification of an inversion of 4.2 Mb among landraces and cultivars, which includes a gene that has been associated in other plants with interactions with the parasitic weed Striga gesnerioides. The genome sequence facilitated the identification of a putative syntelog for multiple organ gigantism in legumes. A revised numbering system has been adopted for cowpea chromosomes based on synteny with common bean (Phaseolus vulgaris). An estimate of nuclear genome size of 640.6 Mbp based on cytometry is presentedS
    corecore