97 research outputs found

    Carbon nanosheets and carbon nanotubes by RF PECVD

    Get PDF
    A planar antenna RF plasma enhanced chemical vapor deposition apparatus was built for carbon nanostructure syntheses. When operated in inductive and capacitive plasma discharging modes, two carbon nanostructures, carbon nanotube (CNT) and carbon nanosheet (CNS), were synthesized, respectively.;A nanosphere lithography method was developed and used to prepare catalyst patterns for CNT growth. Using capacitively coupled C2H2/NH 3 plasma, randomly oriented CNT were synthesized on Ni dot patterned Si substrates. Aligned CNT arrays were grown on SiO2 coated Si substrates, using both C2H2/NH3 and CH 4/H2 capacitive plasmas.;When operated in inductive coupling mode, CNS were successfully deposited on a variety of substrates without any catalyst. Carbon nanosheets are a novel two-dimensional structure, have smooth surface morphologies and atomically thin edges, and are free-standing roughly vertical to substrate surfaces. CNS have a defective graphitic crystalline structure, and contain only C and H elements. Typical CNS growth parameters are 680??C substrate temperature, 40% CH4 in H2, 900 W RF power, and 100 mTorr total gas pressure. Morphology, growth rate, and structure of CNS change with the variations in the growth parameters. Increasing substrate temperature yields a less smooth morphology, a faster growth rate, and more defects in CNS; increasing CH 4 concentration causes a faster growth rate and more defects in CNS, but only slightly changes the morphology; increasing RF power results in a more smooth morphology, a faster growth rate, and less defects in CNS; and decreasing total gas pressure induces a less smooth morphology, a faster growth rate, and more defects in CNS.;In CNS growth mechanism, a base layer forms underneath the vertical sheets; the growth of CNS is through growth species surface diffusion; the electric field near substrate surfaces promotes and keeps the vertical orientation of the CNS, and the atomic hydrogen etching keeps the CNS atomically thin.;Carbon nanosheets have large surface areas, and can stabilize metal thin films into particles 3-5 nm in diameters. For field emission testing, typical CNS have turn-on fields of 5-10 V/mum, a maximum emission current of 28 mA, an emission current density of 2 mA/mm2, and a life-time of 200 hours

    Characterization of 250 MeV protons from Varian ProBeam pencil beam scanning system for FLASH radiation therapy

    Full text link
    Recently, shoot-through proton FLASH has been proposed where the highest energy is extracted from the cyclotron to maximize the dose rate (DR). Even though our proton pencil beam scanning system can deliver 250 MeV (the highest energy), it is not typical to use 250 MeV protons for routine clinical treatments and as such 250 MeV may not have been characterized in the commissioning. In this study, we aim to characterize 250 MeV protons from Varian ProBeam system for FLASH RT as well as assess the ability of clinical monitoring ionization chamber (MIC) for FLASH-readiness. We measured data needed for beam commissioning: integral depth dose (IDD) curve, spot sigma, and absolute dose calibration. To evaluate MIC, we measured output as a function of beam current. To characterize a 250 MeV FLASH beam, we measured: (1) central axis DR as a function of current and spot spacing and arrangement, (2) for a fixed spot spacing, the maximum field size that still achieves FLASH DR (i.e., > 40 Gy/s), (3) DR reproducibility. All FLASH DR measurements were performed using ion chamber for the absolute dose and irradiation times were obtained from log files. We verified dose measurements using EBT-XD films and irradiation times using a fast, pixelated spectral detector. R90 and R80 from IDD were 37.58 and 37.69 cm, and spot sigma at isocenter were {\sigma}x=3.336 and {\sigma}y=3.332 mm, respectively. The absolute dose output was measured as 0.377 GyE*mm2/MU for the commissioning conditions. Output was stable for beam currents up to 15 nA, and it gradually increased to 12-fold for 115 nA. DR depended on beam current, spot spacing and arrangement and could be reproduced within 4.2% variations. Even though FLASH was achieved and the largest field size that delivers FLASH DR was determined as 35x35 mm2, current MIC has DR dependence and users should measure DR each time for their FLASH applications.Comment: 11 pages, 6 figure

    Transient low T3 syndrome in patients with COVID-19: a new window for prediction of disease severity

    Get PDF
    ObjectiveTo investigate the relationship of low T3 syndrome with disease severity in patients with COVID-19.MethodsThe clinical data of 145 patients with COVID-19 were retrospectively collected, and patients were divided into a low T3 group and a normal T3 group. Logistic regression models were used to assess predictive performance of FT3. Receiver operating characteristic (ROC) analysis was used to evaluate the use of low T3 syndrome in predicting critical disease. Kaplan-Meier analysis was used to analyze the impact of low T3 syndrome on mortality.ResultsThe prevalence of low T3 level among COVID-19 patients was 34.48%. The low T3 group was older, and had lower levels of hemoglobin, lymphocytes, prealbumin, and albumin, but higher levels of white blood cells, neutrophils, CRP, ESR, and D-dimer (all p<0.05). The low T3 group had greater prevalences of critical disease and mortality (all p <0.05). Multivariate logistic regression analysis showed that the Lymphocytes, free T3 (FT3), and D-dimer were independent risk factors for disease severity in patients with COVID-19. ROC analysis showed that FT3, lymphocyte count, and D-dimer, and all three parameters together provided reliable predictions of critical disease. Kaplan-Meier analysis showed the low T3 group had increased mortality (p<0.001). Six patients in the low T3 group and one patient in the normal T3 group died. All 42 patients whose T3 levels were measured after recovery had normal levels after discharge.ConclusionPatients with COVID-19 may have transient low T3 syndrome at admission, and this may be useful for predicting critical illness

    Follow-up management service and health outcomes of hypertensive patients in China: A cross-sectional analysis from the national health service survey in Jiangsu province

    Get PDF
    BackgroundHypertension is a major cause of early mortality worldwide. Health follow-up management services can encourage patients with hypertension to improve their health behavior and outcomes. However, a lack of studies on the relationship between specific factors of follow-up management and both subjective and objective health outcome among hypertensive patients exists. The current study investigated the relationship between service content, frequency, mode, and institutions of follow-up management and health outcomes among Chinese hypertensives.MethodsData were obtained from the sixth National Health Service Survey (NHSS) of Jiangsu Province, which was conducted in 2018. Descriptive statistics were used to analyze the sample characteristics and the utilization of follow-up management services. Both multiple linear regression and logistic regression were used to estimate the association of follow-up management service and other factors with hypertensives' subjective and objective health outcomes.ResultSome respondents (19.30%) reported hypertension, and 75.36% of these patients obtained follow-up management services. Hypertensive patients' subjective health outcome self-reported health status and objective health outcome blood pressure (BP) control were found to be significantly associated with follow-up management services. The outcomes were both significantly improved by a high frequency of management services, a high level of follow-up providers, the mode of visiting healthcare facilities and/or calling, and receiving instructions on medication use. However, inquiring about patients' symptoms was negatively associated with self-reported health status and BP control. In addition, BP measurement was significantly and positively associated with hypertensive patients' self-reported health status; the patients receiving lifestyle guidance were more likely to have their BP levels under control.ConclusionsHypertension management strategies should further focus on the frequency of healthcare follow-up management via categorization of the follow-up services and appropriate adjustment of service delivery modes to optimize health follow-up management for hypertensives further improve their outcomes. Meanwhile, complementary policies are also needed to address other socioeconomic factors that can promote good health conditions for hypertension patients

    Targeted Deletion of the Murine Lgr4 Gene Decreases Lens Epithelial Cell Resistance to Oxidative Stress and Induces Age-Related Cataract Formation

    Get PDF
    Oxidative stress contributes to the formation of cataracts. The leucine rich repeat containing G protein-coupled receptor 4 (LGR4, also known as GPR48), is important in many developmental processes. Since deletion of Lgr4 has previously been shown to lead to cataract formation in mice, we sought to determine the specific role that Lgr4 plays in the formation of cataracts. Initially, the lens opacities of Lgr4−/− mice at different ages without ocular anterior segment dysgenesis (ASD) were evaluated with slit-lamp biomicroscopy. Lenses from both Lgr4−/− and wild-type mice were subjected to oxidation induced protein denaturation to assess the ability of the lens to withstand oxidation. The expression of antioxidant enzymes was evaluated with real-time quantitative PCR. Phenotypically, Lgr4−/− mice showed earlier onset of lens opacification and higher incidence of cataract formation compared with wild-type mice of similar age. In addition, Lgr4−/− mice demonstrated increased sensitivity to environmental oxidative damage, as evidenced by altered protein expression. Real-time quantitative PCR showed that two prominent antioxidant defense enzymes, catalase (CAT) and superoxidase dismutase-1 (SOD1), were significantly decreased in the lens epithelial cells of Lgr4−/− mice. Our results suggest that the deletion of Lgr4 can lead to premature cataract formation, as well as progressive deterioration with aging. Oxidative stress and altered expression of several antioxidant defense enzymes contribute to the formation of cataracts

    Protection against SHIV-KB9 Infection by Combining rDNA and rFPV Vaccines Based on HIV Multiepitope and p24 Protein in Chinese Rhesus Macaques

    Get PDF
    Developing an effective vaccine against HIV infection remains an urgent goal. We used a DNA prime/fowlpox virus boost regimen to immunize Chinese rhesus macaques. The animals were challenged intramuscularly with pathogenic molecularly cloned SHIV-KB9. Immunogenicity and protective efficacy of vaccines were investigated by measuring IFN-γ levels, monitoring HIV-specific binding antibodies, examining viral load, and analyzing CD4/CD8 ratio. Results show that, upon challenge, the vaccine group can induce a strong immune response in the body, represented by increased expression of IFN-γ, slow and steady elevated antibody production, reduced peak value of acute viral load, and increase in the average CD4/CD8 ratio. The current research suggests that rapid reaction speed, appropriate response strength, and long-lasting immune response time may be key protection factors for AIDS vaccine. The present study contributes significantly to AIDS vaccine and preclinical research

    Impact of cytotoxic T lymphocytes immunotherapy on prognosis of colorectal cancer patients

    Get PDF
    BackgroundExpansion and activation of cytotoxic T lymphocytes (CTLs) in vitro represents a promising immunotherapeutic strategy, and CTLs can be primed by dendritic cells (DCs) loaded with tumor-associated antigens (TAAs) transformed by recombinant adeno-associated virus (rAAV). This study aimed to explore the impact of rAAV-DC-induced CTLs on prognosis of CRC and to explore factors associated with prognosis.MethodsThis prospective observational study included patients operated for CRC at Yan’an Hospital Affiliated to Kunming Medical University between 2016 and 2019. The primary outcome was progression-free survival (PFS), secondary outcomes were overall survival (OS) and adverse events. Totally 49 cases were included, with 29 and 20 administered rAAV-DC-induced CTL and chemotherapy, respectively.ResultsAfter 37-69 months of follow-up (median, 54 months), OS (P=0.0596) and PFS (P=0.0788) were comparable between two groups. Mild fever occurred in 2 (6.9%) patients administered CTL infusion. All the chemotherapy group experienced mild-to-moderate adverse effects, including vasculitis (n=20, 100%), vomiting (n=5, 25%), nausea (n=17, 85%) and fatigue (n=17, 85%).ConclusionsLymphatic metastasis (hazard ratio [HR]=4.498, 95% confidence interval [CI]: 1.290-15.676; P=0.018) and lower HLA-I expression (HR=0.294, 95%CI: 0.089-0.965; P=0.044) were associated with poor OS in the CTL group. CTLs induced by rAAV-DCs might achieve comparable effectiveness in CRC patients compare to chemotherapy, cases with high tumor-associated HLA-I expression and no lymphatic metastasis were more likely to benefit from CTLs

    PAK1IP1, a ribosomal stress-induced nucleolar protein, regulates cell proliferation via the p53–MDM2 loop

    Get PDF
    Cell growth and proliferation are tightly controlled via the regulation of the p53–MDM2 feedback loop in response to various cellular stresses. In this study, we identified a nucleolar protein called PAK1IP1 as another regulator of this loop. PAK1IP1 was induced when cells were treated with chemicals that disturb ribosome biogenesis. Overexpression of PAK1IP1 inhibited cell proliferation by inducing p53-dependent G1 cell-cycle arrest. PAK1IP1 bound to MDM2 and inhibited its ability to ubiquitinate and to degrade p53, consequently leading to the accumulation of p53 levels. Interestingly, knockdown of PAK1IP1 in cells also inhibited cell proliferation and induced p53-dependent G1 arrest. Deficiency of PAK1IP1 increased free ribosomal protein L5 and L11 which were required for PAK1IP1 depletion-induced p53 activation. Taken together, our results reveal that PAK1IP1 is a new nucleolar protein that is crucial for rRNA processing and plays a regulatory role in cell proliferation via the p53–MDM2 loop

    Genomic data for 78 chickens from 14 populations

    Get PDF
    Background: Since the domestication of the red jungle fowls (Gallus gallus; dating back to~10 000 B.P.) in Asia, domestic chickens (Gallus gallus domesticus) have been subjected to the combined effects of natural selection and human-driven artificial selection; this has resulted in marked phenotypic diversity in a number of traits, including behavior, body composition, egg production, and skin color. Population genomic variations through diversifying selection have not been fully investigated. Findings: The whole genomes of 78 domestic chickens were sequenced to an average of 18-fold coverage for each bird. By combining this data with publicly available genomes of five wild red jungle fowls and eight Xishuangbanna game fowls, we conducted a comprehensive comparative genomics analysis of 91 chickens from 17 populations. After aligning ~21.30 gigabases (Gb) of high-quality data from each individual to the reference chicken genome, we identified ~6.44 million (M) single nucleotide polymorphisms (SNPs) for each population. These SNPs included 1.10 M novel SNPs in 17 populations that were absent in the current chicken dbSNP (Build 145) entries. Conclusions: The current data is important for population genetics and further studies in chickens and will serve as a valuable resource for investigating diversifying selection and candidate genes for selective breeding in chickens.Peer reviewedAnimal Scienc

    Systematical Detection of Significant Genes in Microarray Data by Incorporating Gene Interaction Relationship in Biological Systems

    Get PDF
    Many methods, including parametric, nonparametric, and Bayesian methods, have been used for detecting differentially expressed genes based on the assumption that biological systems are linear, which ignores the nonlinear characteristics of most biological systems. More importantly, those methods do not simultaneously consider means, variances, and high moments, resulting in relatively high false positive rate. To overcome the limitations, the SWang test is proposed to determine differentially expressed genes according to the equality of distributions between case and control. Our method not only latently incorporates functional relationships among genes to consider nonlinear biological system but also considers the mean, variance, skewness, and kurtosis of expression profiles simultaneously. To illustrate biological significance of high moments, we construct a nonlinear gene interaction model, demonstrating that skewness and kurtosis could contain useful information of function association among genes in microarrays. Simulations and real microarray results show that false positive rate of SWang is lower than currently popular methods (T-test, F-test, SAM, and Fold-change) with much higher statistical power. Additionally, SWang can uniquely detect significant genes in real microarray data with imperceptible differential expression but higher variety in kurtosis and skewness. Those identified genes were confirmed with previous published literature or RT-PCR experiments performed in our lab
    corecore