50 research outputs found

    Incorporating Neuro-Inspired Adaptability for Continual Learning in Artificial Intelligence

    Full text link
    Continual learning aims to empower artificial intelligence (AI) with strong adaptability to the real world. For this purpose, a desirable solution should properly balance memory stability with learning plasticity, and acquire sufficient compatibility to capture the observed distributions. Existing advances mainly focus on preserving memory stability to overcome catastrophic forgetting, but remain difficult to flexibly accommodate incremental changes as biological intelligence (BI) does. By modeling a robust Drosophila learning system that actively regulates forgetting with multiple learning modules, here we propose a generic approach that appropriately attenuates old memories in parameter distributions to improve learning plasticity, and accordingly coordinates a multi-learner architecture to ensure solution compatibility. Through extensive theoretical and empirical validation, our approach not only clearly enhances the performance of continual learning, especially over synaptic regularization methods in task-incremental settings, but also potentially advances the understanding of neurological adaptive mechanisms, serving as a novel paradigm to progress AI and BI together

    Functional Connectivity Density, Local Brain Spontaneous Activity, and Their Coupling Strengths in Patients With Borderline Personality Disorder

    Get PDF
    In this study, combining degree centrality (DC) and fractional amplitude of low frequency fluctuation (fALFF) analyses of resting state (rs)-functional magnetic resonance imaging (fMRI) data, we aimed to explore functional connectivity density, local brain spontaneous activity, and their coupling strengths in borderline personality disorder (BPD). Forty-three BPD patients and 39 demographically-matched controls underwent rs-fMRI after completing a series of psychological tests. Two-sample t-tests were performed to compare DC and fALFF between these two groups. Across-voxel correlation analysis was conducted to assess DC-fALFF coupling strengths in each group. Imaging parameters and psychological variables were correlated by Pearson correlation analysis in the BPD group. Altered DC and fALFF values in the BPD group, compared with the control group, were distributed mainly in default mode network (DMN), and DC-fALFF coupling strengths were decreased in the left middle temporal gyrus (MTG) and right precuneus in the BPD group. Additionally, insecure attachment scores correlated positively with left precuneus DC and negatively with fALFF of the right posterior cingulate cortex (PCC) in the BPD group. These altered DC and fALFF findings indicate that the BPD patients had disturbed functional connectivity density and local spontaneous activity in the DMN compared with control subjects. Their decreased connectivity-amplitude coupling suggests that the left MTG and right precuneus may be functional impairment hubs in BPD. Disturbed rs function in the left precuneus and right PCC might underlie insecure attachment in BPD

    Resting-State Default Mode Network Related Functional Connectivity Is Associated With Sustained Attention Deficits in Schizophrenia and Obsessive-Compulsive Disorder

    Get PDF
    Background: Previous studies have indicated the resting-state default mode network (DMN) related connectivity serving as predictor of sustained attention performance in healthy people. Interestingly, sustained attention deficits as well as DMN-involved functional connectivity (FC) alterations are common in both patients with schizophrenia (SCZ) and with obsessive-compulsive disorder (OCD). Thus, the present study was designed to investigate whether the DMN related resting-state connectivity alterations in these two psychiatric disorders were neural correlates of their sustained attention impairments.Methods: The study included 17 SCZ patients, 35 OCD patients and 36 healthy controls (HCs). Sustained attention to response task was adopted to assess the sustained attention. Resting-state scan was administrated and seed-based whole-brain FC analyses were performed with seeds located in classical DMN regions including bilateral medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC).Results: Both SCZ and OCD patients had poorer sustained attention than HCs. Sustained attention deficits in OCD was negatively correlated with their impaired FC of right mPFC-left superior frontal gyrus (SFG) within DMN, and that in SCZ was significantly correlated with their altered FC of left mPFC-bilateral anterior cingulate cortex (ACC) which indicated interaction between DMN and salience network. In addition, the FC between left mPFC and right parietal lobe indicating the interaction between DMN and frontal-parietal network was correlated with sustained attention in both SCZ and OCD.Conclusion: These findings suggest the importance of DMN-involved connectivity, both within and between networks in underlying sustained attention deficits in OCD and SCZ. Results further support the potential of resting-state FC in complementing information for cognitive deficits in psychiatric disorders

    The dot-probe task to measure emotional attention: A suitable measure in comparative studies?

    Get PDF
    corecore