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Abstract: The Kalaizi deposit in the Bulunkuole Group of Taxkorgan area, Western 

Kunlun (NW China) is a unique regional Fe–Ba deposit accompanied with sporadic 

Fe–Pb–Zn sulfide mineralization within a series of iron deposits. All the ore bodies 

are stratabound and hosted by the Early Cambrian metamorphosed argillaceous clastic 

rocks. Here, we analyzed C–S–O–Sr isotopes and trace elements in individual 

minerals (e.g., magnetite, barite, ankerite) from the Kalaizi deposit to investigate the 

origin of this deposit for the first time. The S isotope fractionation (average of 21‰) 

between sulfate and sulfide minerals provided clear evidence that the deposit was 

formed in a semi-closed marine depositional environment with moderate 

replenishment of seawater sulfate. The distinct Post-Archean Australian Shale 

(PAAS)-normalized positive Eu anomalies (2.02 to 11.03) and lower Y/Ho ratios 

(27.2 to 33.4) relative to modern seawater in all individual magnetite minerals 

separated from magnetite–barite ores and the δ18O isotope signatures (10.0 to 13.0‰) 

in individual sulfate minerals suggested that hydrothermal activity played an 
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important role in the formation of the deposit. Barium was likely derived from the 

dissolution of marine barite with a contribution from more radiogenic terrigenous 

sediments considering the slight deviations (within ±0.0013) of 87Sr/86Sr ratios of 

Kalaizi barites from the Early Cambrian seawater. The sulfate and sulfide minerals in 

the ore deposit should evolve from coeval seawater containing residual SO4
2- and 

resultant H2S by means of bacterial sulfate reduction process because (i) δ34S values 

(37.8 to 42.8‰) of anhydrite and barite minerals were slightly higher than those of 

penecontemporaneous seawater, (ii) pyrite and galena minerals owned δ34S values 

(16.3 to 23.5‰) were lower than coeval seawater, and (iii) 13C isotope values (-10.0 

to -12.1‰) of single ankerite minerals were depleted. To summarize, the Kalaizi 

bedded Fe–Ba deposit is interpreted as a cold seep barite deposit overprinted by 

hydrothermal fluids. 

 

Key words: magnetite, barite, hydrothermal fluid, cold seep origin, Taxkorgan 

 

1. Introduction 

Sediment-hosted stratiform barite, commonly formed through the mixing of 

Ba-bearing fluids leaching from silicate minerals with sulfate-rich marine water 

(Hanor, 2000), accounts as the main source of industrial barite. Most of these barite 

deposits have been found in South China, the Qingling Mountains of central China 

(Wang and Li, 1991; Xu et al., 2016), Nevada in the Western US and Mangampeta in 

India (Clark et al., 2004; Maynard and Okita, 1991). Research on the origin of 

stratiform barite provides important information on the study of paleoceanography, 

paleotectonics, and economic geology (Torres et al., 2003). An understanding of key 

features of modern sedimentary barite is a prerequisite for identifying the origin of 

ancient barite deposits (Torres et al, 2003; Johnson et al., 2004, 2009; Canet et al., 

2014). In general, the genetic types of modern sedimentary barite can be divided into 

four subtypes: (1) marine barite, which precipitates directly from seawater in the 

presence of decaying organic debris (Dehairs et al., 1980; Bishop, 1988) and records 
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seawater productivity and chemistry (Paytan et al., 2002); (2) hydrothermal barite that 

formed by the mixing of barium-rich hydrothermal fluids with seawater sulfate close 

to high-temperature vents (Kusakabe et al., 1990); (3) diagenetic barite occurring 

along diagenetic fronts at which barium- and/or hydrocarbon-rich fluids encounters 

with sulfate-bearing pore waters (Torres et al., 1996a, 1996b); (4) cold seep barite 

precipitating from cold-seep fluids containing voluminous hydrocarbons and barium 

near the sediment-water interface along continental margins (Naehr et al., 2000; 

Torres et al, 2003; Aloisi et al., 2004; Feng and Roberts, 2011). When Ba/CH4-rich 

seep fluids migrate from the sulfate-depleted methanogenesis zone to the 

sediment-water interface through faults or lateral tectonic compression, the diagenetic 

barite formed in the sulfate-methane transition zone (SMTZ) could turn into the cold 

seep barite instead (Torres et al., 2003; Castellini et al., 2006; Zhou et al., 2016). 

The Taxkorgan area situated at the junction of the Western Kunlun orogenic belt 

and Pamir Plateau (Fig.1) hosted a potential metallogenic condition because of a 

long-term complicated tectonic evolution. In the past two decades, a number of 

large-scale iron deposits (e.g., Zankan, Laobing, Yelike) have been discovered in this 

area (Fig. 1c), and it is thus considered as an important iron prospecting target in 

Xinjiang province. Despite extensive geological and geochemical studies on these 

iron deposits in recent years, a few key issues, involving the genetic type, still remain 

controversial. A group of workers attributed them to Precambrian BIF-type (Chen et 

al., 2011; Feng et al., 2011; Li et al., 2015), whereas others suggest a marine volcanic 

sedimentary origin (Yan et al., 2012; Huang, 2014). Recently, Zheng et al. (2016) 

argued that the Kalaizi deposit should be a SEDEX Fe–Ba deposit. By comparing 

with various types of iron deposits around the world, Yan et al. (2012) proposed a new 

type (Pamir-type) for iron deposits in the Taxkorgan area. However, it is a little bit of 

arbitrary and lacks a regional perspective because of their study focusing only on the 

geological and geochemical features of the Laobing iron deposit. 

Recently, a large-scale Fe–Ba deposit named Kalaizi was uncovered to the east 

of Laobing deposit by No. 2 Geological Party of Xinjiang Bureau of Geology and 

Mineral Resources (Fig. 1c). By comparison with other iron deposits, this deposit 
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owns an extra ca. 20 Mt barite ore reserves and has significant implications for 

regional Ba prospecting. However, so far, several intriguing problems, such as the 

genetic relationship among the sulfate, sulfide, and carbonate minerals, the source of 

barium, and the ore-forming mechanism of this Fe–Ba deposit are still unclear. In this 

regard, the magnetite–barite, anhydrite–sulfide, and dolomite–magnetite ores in this 

deposit are the main research objects. A systematic field geological investigation and 

petrological observations, coupled with trace element and S–C–O–Sr isotopic 

analyses of individual minerals were conducted. Our ultimate aim is to provide useful 

clues for understanding the genesis of Kalaizi barite deposit and deciphering the 

corresponding ore-forming mechanism. 

 

2. Regional geology 

The western Kunlun orogenic belt, extending from the southern margin of the 

Tarim Craton to the northern margin of the Tibet Plateau (Fig. 1a), is made up of four 

tectonic units (Fig. 1b; Pan, 2000; Wang, 2004; Zhang et al., 2007): the North Kunlun, 

South Kunlun, Taxkorgan–Tianshuihai, and Karakorum terranes, which are separated 

by early Palaeozoic Oytag–Kudi suture zone and Mesozoic Mazar–Kangxiwar and 

Karakorum faults (Pan, 2000; Mattern and Schneider, 2000; Xiao et al., 2002; Zhang 

et al., 2007). The Taxkorgan area is situated in the southwestern part of the 

Taxkorgan–Tianshuihai Terrane (Fig. 1b). It has a NW–SE trend defined by the 

Mazar–Kangxiwar and Karakorum faults. 

All iron ore deposits in Taxkorgan occur in the metamorphosed 

volcano-sedimentary sequences of a previously defined “Paleoproterozoic Bulunkuole 

Group” (Fig. 1c). It consists of magnetite-bearing quartzite, meta-basalt, 

meta-greywacke, and marble (Ji et al., 2011), which have been subjected to regional 

greenschist- to lower amphibolite-facies metamorphism during 460–400 Ma and 

240–200 Ma (Zhang et al., 2007). The overlying rocks show a fault contact 

relationship with the Bulunkuole Group and can be further divided into the Lower 

Silurian (Wenquangou Group) graptolite-bearing clastic and carbonate sedimentary 
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rocks with minor volcanic rocks, the Upper Carboniferous carbonate rocks, the 

Middle Permian clastic and carbonate sedimentary rocks with minor volcanic 

interlayers, and the Lower Cretaceous clastic and carbonate sedimentary rocks. 

Intrusive rocks with different ages are broadly exposed, including Permian, Triassic, 

Cretaceous, and Neogene granitic and granodioritic plutons (Fig. 1c). 

So far, the depositional age of the Bulunkuole Group still remains uncertain. 

Based on the metamorphic grade, zircon U–Pb ages, whole-rock Rb–Sr isochron ages 

(2130–2700 Ma), and the presence of magnetite-bearing quartzites, the Bulunkuole 

Group was first considered as the Paleoproterozoic basement of the Karakorum 

stratigraphy (Li et al., 2008; Ji et al., 2011). Recently, however, a few workers argued 

against this conclusion by obtaining numerous zircon U–Pb ages of differing 

lithologies within this group, including: (1) detrital zircon U–Pb ages of 540–2200 Ma 

for two argillaceous gneiss samples from the southern section of Taxkorgan indicating 

that the Bulunkuole Group should be formed later than Neoproterozoic (Zhang et al., 

2007); (2) the 521.3 Ma bimodal volcanic rocks in the Taaxi deposit (Gao et al., 2013); 

(3) detrital zircon U–Pb ages (510–540 Ma) from the meta-clastic sedimentary rocks 

associated with the Laobing anhydrite iron deposit (Yan et al., 2012); (4) A detailed 

zircon U–Pb isotopic study by Yang (2013) on different lithologies (meta-clastic rocks, 

granitic veins and pelitic granulite) in differing localities revealing that the 

Paleoproterozoic sequence does not exist in the Bulunkuole Group and that the 

Bulunkuole Group, to some extent, contains Neoproterozoic (706–558 Ma), early 

Paleozoic (ca. 515 Ma), and Permian rocks (251–221 Ma); (5) a LA–ICP–MS zircon 

U–Pb age (ca. 537.2 Ma) of meta-volcanic rocks (biotite plagiogneiss) interlayered 

with the Kalaizi deposit (Zheng et al., 2016). 

Based on the above results, the “Paleoproterozoic Bulunkuole Group” has been 

substituted using the “undefined Paleoproterozoic to early Cambrian Bulunkuole 

Group” and needs to be revisited in the future (Zheng et al., 2016; Fig. 1c). It should 

be noted that this suite of Early Cambrian lithologies host most but not all of iron 

deposits, e.g., the Qikeerke, Yelike, Laobing, and Kalaizi deposits, and that they are 

characterized by the presence of anhydrite–magnetite and/or 
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anhydrite–barite–magnetite assemblages (Zhang et al., 2016; Zheng et al., 2016). 

Interestingly, the abundant sulfate minerals in Lower Cambrian sedimentary 

sequences indicate a change from Precambrian anoxic sulfate-poor oceans to 

Phanerozoic oxygenated sulfate-rich oceans (Jewell, 2000; Lyons et al., 2006). As 

newly recognized rock units, the relevant tectonic setting is still unclear. Several 

workers proposed an extensional tectonic setting for the West Kunlun and its adjacent 

region in the Early Palaeozoic (Pan, 2000; Jiang et al., 2000; Gao et al., 2013). 

 

3. Deposit geology 

The rocks exposed in the Kalaizi deposit are the Early Cambrian Bulunkuole 

Group consisting mainly of garnet-bearing two-mica quartz schist, two-mica quartz 

schist (meta-argillaceous sandstone), lenticular dolomitic marble, sulfurized albite 

quartzite, anhydrite with lesser amounts of biotite plagioclase gneiss (meta-felsic 

volcanic rocks), which have undergone greenschist-facies regional metamorphism 

(Fig. 2). As shown in the cross-section (Fig. 3), the No. II magnetite–barite ore body 

is closely associated and intercalated with quartz schists. They occur as monoclinic, 

with striking 110–145° and dipping at a moderate to steep angle of 41–79°. The 

secondary fractures are widely developed due to effects of the regional Taaxi and 

Kangxiwar faults. Intrusive rocks in this area are dominated by biotite granite and 

mafic dyke (Fig. 2). The former located in the northwest is slightly reddish, 

medium-grain, and consists predominantly of K-feldspar, quartz, plagioclase, and 

biotite; whereas the latter strikes NW with 2 to 2.5 km in length and occurs as 

intruding into the wall rocks. 

The Kalaizi deposit has a barite ore reserve of ca. 20 Mt with an average grade of 

43 wt % and an accompanying iron ore reserve of ca. 8 Mt with an average grade of 

15–20 wt %. Other elements, such as Pb, Zn, and sulfur, are of little economic interest. 

The No. II principal ore body, 2 km in length and 50–200 m in width, contains all 

barite and consists of seven small ore lenses (Fig. 2). All the lenses are intercalated 

with quartz schists (Fig. 3, 4) and make Kalaizi become a unique Fe–Ba deposit 
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within regional sulfate-bearing iron deposits. Moreover, an anhydrite–sulfide ore body 

termed No. IIS2 occurs in the hanging wall of No. II ore body and is only observed in 

drill holes (Fig. 3). 

The typical ores are disseminated (Fig. 4d, 5e, 5g and 5h), or laminated (Fig. 4c, 

5a, 5d), and or massive, with ore minerals composed dominantly of barite and 

magnetite with minor pyrite, sphalerite, and galena, while gangue minerals consisting 

mainly of quartz, dolomite, ankerite, muscovite, and biotite. Based on different 

mineral assemblages, four ore types can be identified. (1) Magnetite–barite ore, 

occurring only in No. II ore body, is characterized by alternating magnetite- and 

barite-rich layers with laminated to banded structures (Fig. 5a). It consists of 15–80% 

barite, 10–30% magnetite, 15–30% quartz, and 10–25% ankerite (Fig. 5b, 5c). (2) 

Dolomite–magnetite ore found in No. IV ore body generally has low iron content and 

is associated with dolomite marble. Magnetite minerals within it occur as sparse 

grains or constitute microlaminae (Fig. 5d, 5e). The main mineral compositions are 

15–35% magnetite, 50–75% dolomite and 5–15% quartz (Fig. 5f). (3) 

Muscovite–quartz–magnetite ore, as one main ore type of No. I ore body, comprises 

5–15% biotite, 20–35% muscovite, 30–45% quartz, and 15–35% magnetite (Fig. 5g). 

(4) Anhydrite–pyrite and anhydrite–galena–sphalerite ores (No. IIS2 ore body, Fig. 3) 

located in the hanging wall of No. II ore body are subordinate but with specific 

significance for relevant genesis (see below). Anhydrite–pyrite ore consists of pyrite, 

anhydrite, quartz, and mica with disseminated or laminated texture, while the 

anhydrite–galena–sphalerite ore is composed of anhydrite, galena, and sphalerite (Fig. 

5h, 5i). In places, secondary textures, e.g., disseminated, coarse-grained magnetite 

crystals (Fig. 5g) and tight folds (Fig. 5d) restricted to ores, are present due to the 

post-depositional metamorphism and deformation. 

 

4. Samples and methods 

In this study, laminated magnetite–barite ores from No. II ore body, disseminated 

anhydrite sulfide ores from No. IIS2 ore body and disseminated to banded 
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dolomite–magnetite ores from No. IV ore body were sampled in representative drill 

holes. As mentioned above, the rocks in the Kalaizi deposit have undergone 

greenschist-facies metamorphism and thus the primary sulfur and oxygen isotopes 

should not be affected by low-grade metamorphism (Huston, 1999). All samples were 

crushed, rinsed with distilled water, dried, and sieved to 60–80 mesh. Barite, ankerite, 

and magnetite individual minerals were separated from laminated magnetite–barite 

ores, anhydrite, pyrite, and galena samples were separated from disseminated 

anhydrite–sulfide ores, and dolomites were separated from banded 

dolomite–magnetite ores. Then, geochemical and isotopic analyses, including trace 

element and S–C–O–Sr isotopic measurements were carried out at the Institute of 

Geology and Geophysics, Chinese Academy of Sciences (IGGCAS). 

Trace element concentrations of the magnetite were analyzed with an inductively 

coupled plasma-mass spectrometer (ICP–MS) (Element, Finnigan MAT) using 

solution methods. The uncertainties in this analysis were less than ±5%. Sulfur 

isotopes of barite, anhydrite, and sulfide samples were measured with a Finnigan 

Delta–S mass spectrometer. Sulfate and sulfide samples were combusted in the 

presence of excess CuO in a vacuum to produce SO2. These analyses are reported 

relative to the V–CDT international standard and have an analytical precision better 

than 0.2%. Oxygen isotope analyses from the same batch of barite and anhydrite 

powders were performed at a Finnigan MAT–262 mass spectrometer at IGGCAS. 

Moreover, carbon and oxygen stable isotopes of seven dolomite and ankerite samples 

were measured using a Finnigan MAT–262 mass spectrometer. Carbon isotope data 

are reported as δ13C values, in ‰ notation relative to the VPDB standard; while the 

δ
18O values from sulfate and carbonate minerals are reported relative to the standard 

mean ocean water (VSMOW). The precision of analyses from MAT–262 mass 

spectrometer is better than 0.2‰ for both δ13C and δ18O. 

Barite samples were completely dissolved for strontium isotope (87Sr/86Sr) 

analysis by using Suprapur® sodium carbonate (Na2CO3) to avoid small-scale 

heterogeneities in barites (Breit et al., 1985), and the strontium was separated by 

standard ion-exchange chromatography. The 87Sr/86Sr compositions of the barite 
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samples were measured with an IsoProbe–T mass spectrometer. Repeated 

measurements on the NBS–987 Sr standard solution yielded a mean value of 87Sr/86Sr 

ratio of 0.710265 ± 0.000014 (2σ). Because of the extremely high Sr and low Rb 

concentrations in barite samples, the errors introduced by Na2CO3 and in situ 87Rb 

decay for initial 87Sr/86Sr on the measurements should all be negligible (McCulloch, 

1994; Griffith and Paytan, 2012). 

 

5. Results 

5.1. Trace elements 

Four magnetite samples separated from magnetite–barite ores were analyzed for 

trace and rare earth elements (Table 1). Most LILEs (Large Ion Lithophile Elements; 

e.g., Rb, U, Li, and B) have concentrations less than 5 ppm except for Sr (4.16–79.18 

ppm) and Ba (377.88–7117.21 ppm), whereas, the abundances of HFSEs (High 

field-strength Elements; e.g., Nb, Ta, Zr, Hf and Th) are lower due to relatively low 

partition coefficients in magnetite. The Post-Archean Australian Shale-normalized 

(PAAS; McLennan, 1989) REE patterns for these samples are displayed in Fig. 6. The 

absolute concentrations of total REE and Y (ΣREY) range from 5.79 to 37.82 ppm. A 

general LREE to HREE enrichment ((La/Yb) PAAS = 3.80–11.39), together with a 

pronounced Eu anomaly (Eu/Eu* PAAS = 2.02–11.03) and weak La (La/La* PAAS = 

0.91–1.17) and Ce (Ce/Ce* PAAS = 0.82–0.97) anomalies is observed. Moreover, the Y 

anomaly (Y/Y* PAAS = 0.94–1.04) and concomitant Y/Ho ratios (27.19–33.38) are not 

high enough relative to modern seawater (Bau and Dulski, 1996). 

 

5.2. Sulfur and oxygen isotopes 

The δ34S and δ18O values of the barite and anhydrite samples from No. II ore 

body are given in Table 2. The barite samples have a narrow variation of δ34S and 

δ
18O values, ranging from 39.3‰ to 42.8‰ and between 10.0‰ and 13.0‰, 

respectively. Similar trends are also found for the anhydrite samples (δ34S: 37.8‰ to 

40.7‰; δ18O: 9.9‰ to 12.7‰). These δ34S values are enriched but 18O values 
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depleted when comparing to those of the Early Cambrian seawater sulfate (δ34S = 

33±3‰ and δ18O = 14±1‰; Claypool et al., 1980; Kampschulte and Strauss, 2004; 

Goldberg et al., 2005). Meanwhile there is no correlation between δ34S and δ18O 

values for all sulfate samples studied herein (Fig. 7a). 

The sulfur isotope compositions of the pyrite and galena samples selected from 

anhydrite–sulfide ores are also present in Table 2. Regardless of occurrences of pyrite 

samples, they own δ34S values (16.3‰–23.5‰) nearly identical to that 

(18.4‰–19.5‰) of the galena samples. 

 

5.3. Strontium isotopes 

The 87Sr/86Sr values of the studied barites vary in a limited range from 0.7086 to 

0.7097 (Table 2) and hence are more radiogenic than that of contemporary seawater 

(~0.7084–0.7086; Maloof et al., 2010; Li et al., 2013). In addition, no discernable 

co-variation is present between 87Sr/86Sr ratios and δ34S values for these samples (Fig. 

7c). 

 

5.4. Carbonates carbon and oxygen isotopes 

Carbonate minerals are recognized based on electron microprobe data (not 

shown). Due to the significant amounts of FeO in some carbonates, ankerite (chemical 

formula: Ca(Mg0.42Fe0.38Mn0.20)(CO3)2) is identified intergrown with barite and 

magnetite (Fig. 5b, 5c); whereas iron-poor carbonates (dolomite, 

Ca(Mg0.77Fe0.18Mn0.05)(CO3)2) are found coexisting with magnetite (Fig. 5f). In the 

plot of δ13C vs. δ18O, there are clearly two clusters with respect to these carbonates 

(Fig. 7d). The δ13C and δ18O values of the dolomites span a range from -3.3‰ to -4.6‰ 

and 12.9‰ to 14.0‰, respectively, while the ankerite samples have distinct δ13C 

values of -10.0‰ to -12.1‰ and similar δ18O values of 12.7‰ to 14.0‰ (Table 2). 

 

6. Discussion 

6.1. Origin of magnetite 
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Previous studies show that a significant iron ore belt hosting almost all iron 

deposits, especially sulfate-bearing iron deposits, occurs exclusively in the Early 

Cambrian volcanic sedimentary sequences of Bulunkuole Group in the Taxkorgan 

area (Yan et al., 2012; Zhang et al., 2016; Zheng et al., 2016). Three typical deposits 

are located within this belt, namely, from southest to northwest, Kalaizi Fe–Ba, 

Laobing–Yelike anhydrite–iron, and Taaxi iron deposits (Fig. 1c). Given similar ages, 

occurrences, and mineral assemblages, magnetite in these deposits could be of a 

consistent origin. 

Geological observations combined with the major and trace element analyses of 

iron ores which commonly contain anhydrite and are sampled from the Laobing iron 

deposit suggest a contribution from submarine hydrothermal fluids to the formation of 

magnetite (Yan et al., 2012; Chen et al., 2013). This is corroborated by a presence of 

appreciable polymetallic sulfides (e.g., pyrite, galena, and sphalerite) in No. IIS2 

anhydrite–sulfide ore body of the Kalaizi deposit (Fig. 3, 5h, and 5j). Generally, 

polymetallic sulfides are the typical index minerals of a submarine hydrothermal 

activity (Torres et al., 2003; Koski et al., 1988). 

PAAS-normalized REE pattern is one of the most useful geochemical tools to 

recognize the role of hydrothermal activity (eg., Bau and Dulski, 1999; Planavsky et 

al., 2010; Fu et al., 2010). It is generally accepted that REE patterns of oxic and 

anoxic water are distinctly different from those of hydrothermal fluids (in 

hydrothermal fluids, there are generally LREE-enriched patterns, strong positive Eu 

anomalies, and suppressed chondritic Y/Ho values (~28), particularly for high-T 

hydrothermal fluids) (Alibo and Nozaki, 1999; Bau and Dulski, 1999). The REE 

patterns of four magnetite samples studied herein (Fig. 6) are characterized by 

enrichment of LREE relative to HREE, apparently positive Eu anomalies (Eu/Eu* 

PAAS = 2.08–10.27), as well as the absence of pronounced La, Ce and Y anomalies, 

thus suggesting a hydrothermal source (Alibo and Nozaki, 1999; Bau and Dulski, 

1999; Bolhar and Van Kranendonk, 2007). This is also supported by low Y/Ho ratios 

(27.19–33.38). Taken these above together, all characteristics indicate a hydrothermal 

origin for magnetite in the Kalaizi deposit. 
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6.2. Genesis of barite, anhydrite and sulfide minerals 

6.2.1. General characteristics of ancient stratiform barite 

Recently, ancient stratiform barite deposits have received much consideration and 

are mainly divided into two genetic types: hydrothermal and modern cold seep origin. 

Torres et al. (2003) regarded the modern cold seep barites on continental margins as 

analogues to the Paleozoic stratiform, metal-deficient barite deposits. The remarkable 

features for cold seep-related barite deposits are summarized as follows (Torres et al., 

2003; Koski and Hein, 2004; Johnson et al., 2004, 2009; Feng and Robert, 2011; 

Canet et al., 2014): (1) the barite crystals are well-defined, generally ranging from 

0.02 to 0.7 mm, and occur as rosettes, nodular, or laminated textures; (2) fossil faunas 

are commonly observed; (3) sulfide mineralization is rare and organic-rich shales are 

closely associated; (4) a linear trend exists between S and O isotopes starting from a 

coeval seawater sulfate end member to another with higher values; (5) there may be a 

wide range of Sr isotopic values owning to multiple types of lithologies with which 

ore-forming fluids interact. In addition, direct evidence for specific contribution from 

methane to the formation of carbonates in these deposits is still ambiguous (Johnson 

et al., 2009; Peckmann and Thiel, 2004). 

In contrast, hydrothermal barites occur as xenomorphic crosscutting tabular 

crystals, which commonly constitute rosettes with crystal size ranging between 0.02 

to 0.07 mm (Paytan et al., 2002). Such barites are generally spatially associated with 

anhydrite and polymetallic sulfides (Koski et al., 1988; Torres et al., 2003). Moreover, 

δ
34S and δ18O values of barites are nearly the same as those of coeval seawater sulfate 

and the δ18O values tend to be lower due to the isotope exchange between sulfate and 

H2O at the elevated temperatures during the formation of hydrothermal barite (Van 

Stempvoort and Krouse, 1994). In addition, Sr isotope ratios are commonly between 

coeval seawater and the Sr isotope ratios of pure hydrothermal fluids (Kusakabe et al., 

1990; Paytan et al., 2002; Torres et al., 2003; Koski and Hein, 2004). However, these 

characteristics are not the absolute standards. Emsbo and Johnson (2004) argued that 

the absence of sulfides could not preclude a hydrothermal origin. The fluid inclusions, 
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multiple sulfur and O–Sr isotope studies of barites from JADE hydrothermal field 

(Central Okinawa Through), Southern California rifted Continental Borderland and 

Loki’s Castle vent field indicated that bacterial sulfate reduction could also take place 

in hydrothermal systems (Lüders et al., 2001; Hein et al., 2007; Eickmann et al., 

2014). Hence, some researchers proposed that both hydrothermal and biogenic 

processes could contribute to the formation of bedded barite deposits (Clark et al., 

2004; Han et al., 2015). 

 

6.2.2. Implications for the sulfur cycle 

Generally, marine barites commonly occur as fine-grained crystals (generally 

smaller than 5 um; Paytan et al., 2002) and constitute a small deposit due to their low 

accumulation rate in modern ocean basins (Koski and Hein, 2004). Given a relatively 

large scale of the Kalaizi deposit, and coarse-grained barite crystals (0.2 mm–2.0 mm; 

Fig. 4d, 5b and 5c) despite a possible post-depositional metamorphic recrystallization, 

a marine origin is precluded. Because it is hard to discriminate between diagenetic 

and cold seep barite considering their similar geochemical signatures (Castellini et al., 

2006; Zhou et al., 2016), so the most preferable genesis for Kalaizi barite is focused 

on hydrothermal or cold seep origin which is the same as the other Paleozoic 

stratiform barite deposits (Torres et al., 2003; Koski and Hein, 2004; Johnson et al., 

2004, 2009; Canet et al., 2014). 

The sulfur and oxygen isotope couples are commonly used to offer valuable 

insights into the sulfur cycle and provide further information on the sources of sulfur 

(Aharon and Fu, 2003; Johnson et al., 2004). Nearly consistent δ34S and δ18O values 

(Table 2 and Fig. 7a, b) for barite and anhydrite samples in the Kalaizi deposit 

indicate a similar source of sulfate. These δ34S values are higher relative to coeval 

(Early Cambrian) seawater (δ34S = 33 ± 3‰; Claypool et al., 1980; Kampschulte and 

Strauss, 2004), suggesting that the sulfur was derived from seawater and that sulfate 

in seawater had been partially reduced. In general, there are two patterns for sulfate 

reduction processes in modern seawater. One is thermal sulfate reduction (TSR), 

where significant sulfur isotope fractionation does not take place (Machel et al., 1995). 
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Hence, the corresponding δ34S values of sulfates from hydrothermal systems are 

either compatible with or slightly greater (as much as 1 to 2 per mil) than that of 

contemporary seawater (Kusakabe et al., 1990; Paytan et al., 2002; Johnson et al., 

2004). Given relatively higher values for the Kalaizi sulfates, they had not been 

subject to this reducing way. The other is bacterial sulfate reduction (BSR) (eq. (1)), 

which could at the same time generate an isotopically heavy reservoir of residual 

dissolved SO4
2- and an isotopically light flux of S2- that are transferred to the sediment 

pile (Hanor, 2000), owing to preferential breakage of 32S–O bonds compared to 34S–O 

bounds (Goldberg et al., 2006). 

2CH2O+SO4
2-→H2S+2HCO3

-   (1) 

When in direct contact with metal ions (e.g., Fe, Ba, Ca), sulfate minerals would 

be deposited along with polymetallic sulfides. Considering that there is insignificant 

sulfur isotopic fractionation during precipitation (Fry et al., 1988), the resulting 

sulfide and sulfate minerals can retain the S isotopic compositions of H2S and SO4
2-. 

Therefore, there is obviously positive S isotope fractionation between sulfate and 

sulfide minerals with a general fractionation of 15–60‰ (Ohmoto and Rye, 1979). 

Moreover, continuous removal of H2S via the precipitation of metal sulfide under 

sulfate limited conditions (close system) would enrich the residual sulfate in δ34S as 

the reaction proceeds (Johnson et al., 2004; Goldberg et al., 2006). This is also 

confirmed by relatively lower δ34S values of pyrite and galena samples (16.3–23.5‰) 

coexisting with anhydrite and average ∆34SSulfate–Sulfide value (the deviation of δ34S 

value of sulfate mineral from associated sulfide) of 21‰ in the Kalaizi deposit (Table 

2, Fig. 7b). It is unlikely that hydrothermal H2S input would had a major influence on 

the precipitation of sulfides, since δ34S values of the hydrothermal influx commonly 

lie around 0–3‰ (Kusakabe et al., 1990). 

Theoretical and experimental studies both suggest that the kinetic effects of 

biological sulfate reduction generally produce a positive correlation between δ34S and 

δ
18O values of sulfates (Aharon and Fu, 2000; Johnson et al., 2004). In other words, 

high δ34S values of sulfates are accompanied by high δ18O values. However, the δ18O 

values of Kalaizi sulfates are lower than that of coeval seawater (δ18O=14±1‰; 
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Claypool et al., 1980; Goldberg et al., 2005) and no correlation is present between 

δ
34S and δ18O (Fig. 7a), which are ascribed to either H2S oxidation or S0 

disproportionation reactions that lead to the formation of sulfates (Böttcher et al, 2001; 

Böttcher and Thamdrup, 2001) or relatively high temperature (approximately 150°C) 

that is enough to result in an isotope exchange between sulfate and H2O (Van 

Stempvoort and Krouse, 1994; Johnson et al., 2004). Given that sulfur isotopic 

fractionation during re-oxidation of H2S or S0 disproportionation is negligible (Fry et 

al., 1988), it would not be used to account for higher δ34S values of sulfates in the 

Kalaizi deposit. Therefore, the latter process is reasonable. 

Notably, isotopic fractionation is likely to be strongly influenced by sulfate 

reduction rate. In a restricted pore fluid system with limited sulfate input from the 

overlying seawater, the δ34S and δ18O values of barites are gradually increased due to 

the progressive and efficient bacterial sulfate reduction occurring below the 

water-sediment interface. In contrast, because of the slower bacterial sulfate reduction 

rate in an open system, barite with lower δ34S and δ18O values is possibly precipitated 

above or at the water-sediment interface with a continuous supply of sulfate that leads 

to inefficient bacterial sulfate reduction (Wang and Li, 1991; Aharon and Fu, 2000, 

2003; Feng and Robert, 2011). In addition, Feng and Robert (2011) also emphasized 

that reduction of up to 94% of the seawater sulfate could generate barite with the most 

positive δ34S values, while lower δ34S values of barites are attributed to the low extent 

of seawater sulfate reduction in an open system. For the studied barite and anhydrite 

minerals, no more than 25% of the seawater sulfate may have been reduced to form 

the sulfate minerals with centralized δ34S values of 37.8‰ to 42.8‰ based on the 

Rayleigh fractional model (Aharon and Fu, 2000). In consideration of the 

∆
34SSulfate–Sulfide values (average value of 21‰) at the same time, Kalaizi sulfate and 

sulfide minerals should form in a semi-closed marine environment accompanied with 

medium bacterial sulfate reduction rate. 

 

6.2.3. Source of barium 

Strontium is readily incorporated into the crystal structure of barite once it 
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formed, making strontium isotopic signatures preserve in barite and hence become a 

useful proxy to trace the source of Sr and coherent Ba for barite formation (Hanor, 

2000). Generally, strontium isotopic compositions of seawater are controlled by two 

potential sources: continental weathering run-off with radiogenic Sr and hydrothermal 

fluids with low 87Sr/86Sr values (Paytan et al., 2002). Moreover, hydrothermal barites 

with significant negative ∆87Sr/86Sr values (the deviations of 87Sr/86Sr ratios from 

coeval seawater) indicate a nonradiogenic source for Sr and Ba, which are deriving 

from leaching oceanic basalts (Kusakabe et al., 1990), whereas modern cold seep 

barites have ∆87Sr/86Sr values within ±0.002 (Torres et al., 2003; Griffith and Paytan, 

2012). The 87Sr/86Sr ratios of seven Kalaizi barite samples range from 0.7086 to 

0.7097 (Fig. 7d), which are higher (within ±0.0013) than those of the Early Cambrian 

seawater (~0.7084–0.7086; Maloof et al., 2010; Li et al., 2013). These imply that Sr 

and Ba for Kalaizi barites were derived from the penecontemporaneous seawater 

modified by more radiogenic terrigenous sediments and that the Kalaizi deposit could 

be a cold seep-related barite deposit. 

 

6.3. Genesis of carbonates 

Carbonates within the Kalaizi ores can be divided into two types: dolomite 

intergrown with magnetite (Fig. 5f) and ankerite coexisting with barite and magnetite 

(Fig. 5b and 5c), which are just consistent with their differing carbon but similar 

oxygen isotopic signatures (Fig. 7d). The ankerite minerals are more depleted in δ13C 

values (-10.0 to -12.1‰) compared to dolomite samples (-3.3 to -4.6‰). In general, 

there are a large number of carbon sources: (1) dissolved inorganic carbon (DIC) with 

the δ13C value of 1‰ within seawater (Aharon et al., 1991); (2) a volcanic or mantle 

carbon (-3 to -8‰) (e.g., Deines, 1970; Perry et al., 1973; Des Marais and Moore, 

1984); (3) organic matter (-20‰, Goñi et al., 1998); (4) methane (-25 to -50‰, 

Peckmann and Thiel, 2004) and non-methane hydrocarbons (-27‰, Kennicutt et al., 

1988). It is noted that coupling the reduction of sulfate minerals to the oxidation of 

organic matter (eq. 1 above) could provide the light carbon isotopic values of 

carbonate minerals associated with sulfates. Therefore, the relatively lower carbonate 
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isotopic signature of ankerite studied here could have been derived exclusively from 

organically derived CO2 mixing with a small amount of normal marine water. 

However, the light carbon of iron-poor dolomite instead has a likely hydrothermal 

origin because hydrothermal water circulating through older volcanic rocks may be 

slightly depleted in 13C relative to seawater. This is also borne out by their close 

association with magnetite that records a hydrothermal contribution. 

 

6.4. Genetic model 

Maynard et al. (1995) divided barite deposits into continental margin type and 

intracratonic rift type in terms of tectonic settings where they were deposited. Lower 

radiogenic strontium isotopic values compared to the contemporaneous seawater are 

typical of barites deposited on the continental margin where little Pb or Zn can be 

observed associated spatially with these barites. By contrast, the latter type is 

characterized by higher strontium isotopes relative to coeval seawater and presence of 

a certain amounts of Pb or Zn sulfides, which are consistent with features of the 

Kalaizi deposit, implying that it should be formed in a rift. This is also corroborated 

by the existence of Early Cambrian bimodal volcanic rocks (521.3±3.3Ma, Gao et al., 

2013) in the Taaxi iron deposit (Fig. 1c). Moreover, the slight higher δ34S values of 

the sulfate minerals in the Kalaizi deposit compared to the coeval seawater due to the 

medium sulfate reduction rate suggest that they precipitated likely in a semi-restricted 

system. These relevant geochemical features of the Kalaizi sulfates are comparable 

with those of modern cold seep barites, further implying a cold seep origin. However, 

detailed comparison revealed a difference with regard to the occurrence of magnetite 

coexisting with sulfates, clearly indicating a hydrothermal imprint during diagenesis. 

This is further confirmed by lower δ18O values of all sulfate samples and the presence 

of sulfide minerals (e.g., galena, sphalerite, and pyrite) in the Kalaizi deposit. 

Importantly, barite hardly coexists with anhydrite in the Kalaizi deposit. It is 

commonly accepted that precipitation of anhydrite could only occur when the Ba2+ is 

completely consumed in terms of a system containing SO4
2-, Ba, and Ca, as shown in 

the phase diagram reported by Maynard and Okita (1991) (Fig. 8a). Based on 



  

18 

diagrams illustrating the stability regions of Fe–S–O minerals proposed by Huston 

and Logan (2004), it is possible that magnetite is only stable under a reduced 

condition (ΣSO4/ΣH2S < 10-2.5 and ΣSAncient seawater/ΣSModern seawater < 10-5 at 25°C), and 

the barite deposition indicates a relatively oxidized condition (ΣSO4/ΣH2S > 10-2.5 and 

ΣSAncient seawater/ΣSModern seawater > 10-2.5 at 25°C). It is worth noting that as the 

temperature increases, the stable fields of barite and magnetite expand and likely 

overlap between 100 and 200°C, implying that the coexistence of barite and magnetite 

in Kalaizi (Fig. 5d, e) could occur under a relatively high-T condition. 

In modern cold seeps, pore water sulfate can be consumed not only by oxidation 

of organic carbon (eq. 1 above), but also by anaerobic oxidation of methane (AOM, 

eq. (2), e.g, Boetius et al., 2000; Knittel and Boetius, 2009): 

CH4 + SO4
2-→HS- + HCO3

- +H2O      (2) 

Below the water-sediment interface, the seawater sulfate is gradually reduced by 

bacterial sulfate reduction with the burial depth increasing (Goldhaber and Kaplan, 

1980; Jørgensen et al., 2001). Once pore water sulfate has been consumed completely, 

continuous degradation of residual organic matter would lead to the generation of 

methane due to the methanogenic bacteria (Boetius et al., 2000; Knittel and Boetius, 

2009). Because of the low solubility, barite can exist stably with the presence of 

dissolved residual sulfate in sulfate reduction zone (SRZ) and will be dissolved by 

AOM under the sulfate-depleted methanogenesis zone, which results in high barium 

concentration in pore water (Torres et al., 1996b; Riedinger et al, 2006). So the 

transition zone from SRZ to the sulfate-depleted methanogenesis zone called 

sulfate-methane transition zone (SMTZ) is vital for the barium cycle (Torres et al., 

1996a; Dickens, 2001; Aloisi et al., 2004; Zhou et al., 2015). By analogy with cold 

seep barite, barium was likely to derive from the dissolution of marine barite that was 

modified by terrigenous sediments in Kalaizi. As Ba/CH4-rich fluids that released 

from AOM discharged at the sediment-water interface through tectonic processes, 

cold seep or Kalaizi barite would reprecipitate when interacting with residual sulfate 

from SRZ (Torres et al., 1996a; Castellini et al., 2006; Zhou et al., 2016). However, 

the relevant evidence for the presence of CH4 is still a problem in this study. This may 
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be attributed to a fast fluid seepage condition which is indicated by the slightly higher 

δ
34S values of the Kalaizi sulfate minerals due to the medium bacterial sulfate 

reduction rate (Feng and Robert, 2011), because CH4 could lost from the vent site as a 

benthic flux in high seepage conditions (Aloisi et al., 2004; Johnson et al., 2009). 

Above all, the corresponding ore-forming mechanism of the Kalaizi deposit is 

shown in Fig. 9 and summarized as follows. In the Early Cambrian semi-restricted 

and rifted basinal situation, the process of barite mineralization experienced four steps, 

including input of marine barite flux, dissolution of marine barite, migration of 

Ba/CH4-rich seep fluids, and formation of Kalaizi barite (Fig. 9). At the same time, 

bacterial sulfate reduction in the sulfate reduction zone resulted in the accumulation of 

an abundant H2S, SO4
2-, and HCO3

- at the shallower depth below sediment-water 

interface. Kalaizi anhydrite precipitated subsequently after barium was consumed. It 

should be noted that the lower water column likely contains a certain amount of 

hydrothermal-derived Pb, Zn, and Fe. As a consequence, such diverse mineral 

assemblages (sulfides, magnetite, and sulfates) observed within the Kalaizi Fe–Ba 

deposit would be produced under specific conditions. 

 

7. Conclusions 

Based on the field investigation and detailed geochemical analyses, the Kalaizi 

Fe–Ba deposit is proposed to be a cold seep-related deposit imprinted by 

hydrothermal fluids. Specifically, the slightly higher δ34S values of sulfates relative to 

contemporaneous seawater, coupled with pronounced negative δ13C values of ankerite 

samples, suggest an involvement of moderately efficient bacterial sulfate reduction 

under the presence of organic matter in a semi-restricted basinal environment. 

Moreover, strontium isotope data imply a continental contribution to the solutes (Ba). 

In comparison with typical cold seep barites, the occurrence of sulfides (pyrite, galena 

and sphalerite) and magnetite and relevant geochemical signatures clearly indicate a 

strong hydrothermal role in the formation of this deposit. 
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Highlights 

(1) A Fe-Ba deposit formed in semi-closed basinal environment with medium bacterial sulfate 

reduction rate; 

(2) Cold seep origin for Kalaizi barite overprinted by hydrothermal fluids; 

(3) Barium was sourced from the dissolution of marine barite with a contribution from more 

radiogenic terrigenous sediments. 
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Figure captions 

Fig. 1 (a) Simplified tectonic map of China, showing the location of the western 

Kunlun Orogenic Belt; (b) Tectonic subdivisions of the West Kunlun Orogen; (c) 

Geological sketch map and distribution of iron ore deposits and Fe–Ba deposit in 

Taxkorgan (Modified after Ji et al., 2011 and Zhou et al., 2017). The location of Fig. 2 

is marked. 

 

Fig. 2 Geological map of the Kalaizi Fe–Ba deposit (modified after No. 2 Geological 

Party of Xinjiang Bureau of Geology and Mineral Resources). The locations of 

cross-section line 65 and the drill hole No. ZK6103 (Fig. 3) are indicated. 

 

Fig.3 (a) Geological cross-section, line 65 (see Fig. 2), in the Kalaizi Fe–Ba deposit 

(after No. 2 Geological Party of Xinjiang Bureau of Geology and Mineral Resources, 

the location of Fig. 4a is marked); (b) Lithostratigraphic column of drill hole No. 

ZK6103 (see Fig. 2). 

 

Fig. 4 Field photographs of the Kalaizi Fe–Ba deposit. (a–b) Outcrop of the line 65 

geological profile, the No. II2 magnetite–barite ore body in conformable contact with 

the meta-argillaceous sandstone ((garnet-bearing) two-mica quartz schist) display the 

typical feature of sediment-hosted Fe–Ba deposit; (c–d) Magnetite–barite ores with 

laminated and disseminated structure. 

 

Fig. 5 Photographs and photomicrographs of the Fe–Ba ores in the Kalaizi deposit. (a) 

Magnetite–barite ore from a drill hole, showing alternating cm-scale magnetite-rich 

and barite-rich banding; (b–c) Magnetite–barite ores which are composed of barite, 

magnetite, quartz and ankerite (Crossed polar); (d–e) Dolomite marbles that contain 

banded and disseminated magnetite; (f) Disseminated magnetite which is coexistence 
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with dolomite and quartz (Crossed polar); (g) Photomicrograph of 

muscovite–quartz–magnetite ore, displaying the disseminated structure and secondary 

enlargement of magnetite (plane polarized light); (h–i) Hand specimen and the 

corresponding photomicrograph (reflected light) of subhedral to anhedral pyrite, 

sphalerite and galena that coexist with anhydrite. 

Abbreviations: Anh–anhydrite; Ank–ankerite; Bt–biotite; Brt–barite; Dol–dolomite; 

Ga–galena; Grt–garnet; Hb–hornblende; Ms–muscovite; Mt–magnetite; Py–pyrite; 

Q–quartz; Sp–sphalerite. 

 

Fig. 6 PAAS-normalized REE+Y patterns of the Kalaizi magnetite, average high-T 

and low-T hydrothermal fluids, as well as average South Pacific seawater. The data of 

South Pacific seawater, high-T and low-T hydrothermal fluids are from Bolhar and 

Van Kranendonk (2007). The values of PAAS are after Mclennan (1989). 

 

Fig. 7 (a) Sulfur and oxygen isotopic compositions of barite and anhydrite samples 

from the Kalaizi deposit. (b) Histogram which shows the overall distribution of δ34S 

values in sulfate and sulfide minerals from the Kalaizi deposit. (c) Plot of 87Sr/86Sr 

and δ34S values for the Kalaizi barite samples. (d) Plot of carbon and oxygen stable 

isotope compositions of the Kalaizi carbonates (dolomite and ankerite). Open squares 

indicate the isotopic compositions of the Early Cambrian seawater, which are derived 

from Claypool et al. (1980), Kampschulte and Strauss (2004), Goldberg et al. (2005) 

for sulfur and oxygen isotopes and from Maloof et al. (2010), Li et al. (2013) for 

87Sr/86Sr ratio. 

 

Fig. 8 (a) Phase diagrams showing stability fields for barite and anhydrite minerals in 

aqueous solution at 25°C and 1 atm under the condition of a[Ca] = 10-2.63 and a[CO3] 

= 10-5.21, typical values of modern seawater (after Maynard and Okita, 1991); (b, c) 

ΣSO4/ΣH2S versus total sulfur phase diagrams calculated at 25°C and 75°C under the 

condition of modern oceanic pH and salinity, showing the stability fields for 

Fe–Ba–S–O minerals (after Huston and Logan, 2004). Total sulfur concentrations are 
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normalized to the level in modern open ocean seawater. 

 

Fig. 9 Proposed genetic model for the Kalaizi Fe–Ba deposit in a semi-closed rifted 

basin. The barium cyclic pattern is similar to modern cold seep barite. The process of 

the barite mineralization in Kalaizi involved four steps, including input of marine 

barite flux, dissolution of marine barite, migration of Ba-rich seep fluids, and 

formation of Kalaizi barite (modified from Torres et al., 2003; Castellini et al., 2006 

and Zhou et al., 2016). Sulfate, sulfide, ankerite and magnetite minerals would 

precipitate when metal-bearing (lead, zinc and iron) hydrothermal fluids encountered 

with pore waters charged with SO4
2-, H2S and HCO3

-. 
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Table 1 Trace elements (ppm) of the magnetite samples separated from magnetite–barite ores in 

the Kalaizi deposit. 

Sample TP4-4-4 TP4-4-5 TP4-6-3 ZK7303-359 Sample TP4-4-4 TP4-4-5 TP4-6-3 ZK7303-359

La 1.54 8.95 2.61 3.43 Eu/Eu* PAAS 4.72 5.06 11.03 2.02 

Ce 2.38 15.2 3.96 5.33 Li 0.39 0.27 0.17 0.10 

Pr 0.25 1.67 0.35 0.54 Be 0.01 0.01 0.00 0.04 

Nd 0.70 5.95 0.90 1.83 Sc 0.09 0.01 0.00 0.04 

Sm 0.12 1.09 0.16 0.42 V 27.57 10.22 1.63 15.84 

Eu 0.10 0.96 0.31 0.14 Co 1.95 2.79 2.16 1.29 

Gd 0.11 0.95 0.13 0.22 Cu 7.35 32.56 100.87 0.93 

Tb 0.01 0.10 0.02 0.03 Zn 93.47 262.08 556.25 51.28 

Dy 0.07 0.49 0.08 0.16 Ga 22.86 4.08 3.79 8.56 

Y 0.42 2.17 0.44 0.75 Rb 0.04 0.81 0.56 0.46 

Ho 0.01 0.07 0.02 0.03 Sr 4.16 79.18 47.94 35.20 

Er 0.04 0.14 0.04 0.05 Zr 2.40  0.04 0.08 0.03 

Tm 0.01 0.01 0.01 0.01 Nb 0.03 0.06 0.14 0.04 

Yb 0.03 0.06 0.022 0.04 Cs 0.01 0.04 0.01 0.00 

Lu 0.00 0.01 0.00 0.01 Ba 377.88 7117.21 3025.40 2299.90 

ΣREE+Y 5.79 37.82 9.04 12.96 Hf 0.00 0.00 0.00 0.00 

Y/Ho 30.00 33.38 27.19 29.88 Ta 0.02 0.00 0.04 0.00 

(La/Yb)PAAS 3.80 11.39 8.70 7.23 Tl 0.01 0.01 0.00 0.00 

La/La* PAAS 0.91 1.08 1.05 1.17 Pb 208.12 40.30 46.60 4.05 

Ce/Ce* PAAS 0.82 0.94 0.95 0.97 Th 0.39 0.01 0.01 0.01 

Y/Y* PAAS 1.04 0.94 0.96 0.94 U 0.70 0.27 0.14 0.03 

Note: (La/Yb) PAAS = LaPAAS/YbPAAS, La/La* PAAS = LaPAAS/(3PrPAAS - 2NdPAAS), Ce/Ce* PAAS = 

CePAAS/(2PrPAAS - NdPAAS) (Bolhar et al., 2004), Eu/Eu* PAAS = EuPAAS/(0.67SmPAAS + 0.33TbPAAS) 

(Bau and Dulski, 1996), Y/Y* PAAS = 2YPAAS/(DyPAAS + HoPAAS), PAAS values after Mclennan 

(1989). 
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Table 2 S–C–O–Sr isotopic analyses of the associated minerals in the Kalaizi deposit 

Sample No. ore types mineral δ
34SVCTD δ13CVPD δ18OVSMOW

87Sr/86Sr 

TP4-4-4 Magnetite–barite ore Barite 40.9*  13.0 0.7086 

TP4-6-1 Magnetite–barite ore Barite 41.3*  12.5 0.7087 

TP4-6-2 Magnetite–barite ore Barite 41.3*  10.8 0.7088 

TP4-6-3 Magnetite–barite ore Barite 42.8  10.8 0.7091 

Ankerite  -12.1 13.3  

KL7303-359 Magnetite–barite ore Barite 39.3*  11.5 0.7091 

Ankerite  -11.8 14.0  

KL7303-357 Magnetite–barite ore Barite 39.6  10.0 0.7088 

Ankerite  -10.0 12.7  

KL7303-350 Magnetite–barite ore Barite 39.8  11.7 0.7097 

Ankerite  -11.8 13.3  

KL4105-157 Anhydrite–pyrite ore Anhydrite 39.9*  10.7  

Pyrite 23.5    

KL6504-288 Anhydrite–galena–sphalerite 

ores 

Anhydrite 38.2  10.1  

Pyrite 17.8    

Galena 18.4    

KL6504-290 Anhydrite–galena–sphalerite 

ores 

Anhydrite 40.5  11.3  

Pyrite 16.3    

Galena 19.5    

KL6504-291 Anhydrite–pyrite ore Anhydrite 37.8  12.7  

Pyrite 16.8    

KL4105-139 Anhydrite Anhydrite 40.7*  9.9  

KL4105-182 Anhydrite Anhydrite 39.5  12.0  

KL1202-160 Quartz–pyrite ore Pyrite 17.0*    

KL1201-161 Quartz–pyrite ore Pyrite 18.8*    

KL2501-368 Dolomite–magnetite ore Dolomite  -4.2 14.0  

KL2501-371 Dolomite–magnetite ore Dolomite  -3.3 13.8  

KL2501-381 Dolomite–magnetite ore Dolomite  -4.6 12.9  

Note: δ34S values marked by * are cited from Zheng et al., 2016 

 


