57 research outputs found

    Environment Transformer and Policy Optimization for Model-Based Offline Reinforcement Learning

    Full text link
    Interacting with the actual environment to acquire data is often costly and time-consuming in robotic tasks. Model-based offline reinforcement learning (RL) provides a feasible solution. On the one hand, it eliminates the requirements of interaction with the actual environment. On the other hand, it learns the transition dynamics and reward function from the offline datasets and generates simulated rollouts to accelerate training. Previous model-based offline RL methods adopt probabilistic ensemble neural networks (NN) to model aleatoric uncertainty and epistemic uncertainty. However, this results in an exponential increase in training time and computing resource requirements. Furthermore, these methods are easily disturbed by the accumulative errors of the environment dynamics models when simulating long-term rollouts. To solve the above problems, we propose an uncertainty-aware sequence modeling architecture called Environment Transformer. It models the probability distribution of the environment dynamics and reward function to capture aleatoric uncertainty and treats epistemic uncertainty as a learnable noise parameter. Benefiting from the accurate modeling of the transition dynamics and reward function, Environment Transformer can be combined with arbitrary planning, dynamics programming, or policy optimization algorithms for offline RL. In this case, we perform Conservative Q-Learning (CQL) to learn a conservative Q-function. Through simulation experiments, we demonstrate that our method achieves or exceeds state-of-the-art performance in widely studied offline RL benchmarks. Moreover, we show that Environment Transformer's simulated rollout quality, sample efficiency, and long-term rollout simulation capability are superior to those of previous model-based offline RL methods.Comment: ICRA202

    EquiDiff: A Conditional Equivariant Diffusion Model For Trajectory Prediction

    Full text link
    Accurate trajectory prediction is crucial for the safe and efficient operation of autonomous vehicles. The growing popularity of deep learning has led to the development of numerous methods for trajectory prediction. While deterministic deep learning models have been widely used, deep generative models have gained popularity as they learn data distributions from training data and account for trajectory uncertainties. In this study, we propose EquiDiff, a deep generative model for predicting future vehicle trajectories. EquiDiff is based on the conditional diffusion model, which generates future trajectories by incorporating historical information and random Gaussian noise. The backbone model of EquiDiff is an SO(2)-equivariant transformer that fully utilizes the geometric properties of location coordinates. In addition, we employ Recurrent Neural Networks and Graph Attention Networks to extract social interactions from historical trajectories. To evaluate the performance of EquiDiff, we conduct extensive experiments on the NGSIM dataset. Our results demonstrate that EquiDiff outperforms other baseline models in short-term prediction, but has slightly higher errors for long-term prediction. Furthermore, we conduct an ablation study to investigate the contribution of each component of EquiDiff to the prediction accuracy. Additionally, we present a visualization of the generation process of our diffusion model, providing insights into the uncertainty of the prediction

    Safe, Efficient, and Comfortable Velocity Control based on Reinforcement Learning for Autonomous Driving

    Get PDF
    A model used for velocity control during car following was proposed based on deep reinforcement learning (RL). To fulfil the multi-objectives of car following, a reward function reflecting driving safety, efficiency, and comfort was constructed. With the reward function, the RL agent learns to control vehicle speed in a fashion that maximizes cumulative rewards, through trials and errors in the simulation environment. A total of 1,341 car-following events extracted from the Next Generation Simulation (NGSIM) dataset were used to train the model. Car-following behavior produced by the model were compared with that observed in the empirical NGSIM data, to demonstrate the model's ability to follow a lead vehicle safely, efficiently, and comfortably. Results show that the model demonstrates the capability of safe, efficient, and comfortable velocity control in that it 1) has small percentages (8\%) of dangerous minimum time to collision values (\textless\ 5s) than human drivers in the NGSIM data (35\%); 2) can maintain efficient and safe headways in the range of 1s to 2s; and 3) can follow the lead vehicle comfortably with smooth acceleration. The results indicate that reinforcement learning methods could contribute to the development of autonomous driving systems.Comment: Submitted to IEEE transaction on IT
    • …
    corecore