159 research outputs found

    N-(2-Hy­droxy­eth­yl)-5-(4-meth­oxy­phen­yl)-4H-pyrazole-3-carboxamide

    Get PDF
    In the title compound, C13H15N3O3, the dihedral angle between the benzene and pyrazole rings is 7.7 (1)° and the O—C—C—N torsion angle of the side chain is 74.1 (2)°. In the crystal, mol­ecules are linked by O—H⋯O, N—H⋯O and N—H⋯N hydrogen bonds

    Mechanical behaviour of PVC-CFRP confined concrete column with RC beam joint subjected to axial load

    Get PDF
    U radu je prikazano eksperimentalno istraživanje oblika loma, granične čvrstoće, deformacija i krivulja opterećenje-pomak spoja betonskog stupa obavijenog PVC-CFRP-om i AB grede (PCRBJ) za slučaj osnog opterećenja. Uzorci spoja betonskog stupa obavijenog PVC-om i AB grede (PRBJ) i devet uzoraka PCRBJ projektirani su prema načelu slabog stupa i čvrstog spoja. Predložen je pristup numeričke analize za prikladno predviđanje krivulje opterećenje – pomak. Utvrđeno je da se numerički predviđene vrijednosti dobro podudaraju s rezultatima ispitivanja.An experimental investigation on failure mode, ultimate strength, strain variation, and load-displacement curves of PVC-CFRP confined concrete column with reinforced concrete (RC) beam joint (PCRBJ) subjected to axial load was conducted in this study. Samples of a PVC confined concrete column with RC beam joint (PRBJ) and nine PCRBJs were designed using the principle of weak column and strong joint. A numerical analysis approach for convenient prediction of the load-displacement curve of specimen was proposed. It was established that the estimated values are in good agreement with test data

    Structural and Functional Characterization of the FadR Regulatory Protein from Vibrio alginolyticus

    Get PDF
    The structure of Vibrio cholerae FadR (VcFadR) complexed with the ligand oleoyl-CoA suggests an additional ligand-binding site. However, the fatty acid metabolism and its regulation is poorly addressed in Vibrio alginolyticus, a species closely-related to V. cholerae. Here, we show crystal structures of V. alginolyticus FadR (ValFadR) alone and its complex with the palmitoyl-CoA, a long-chain fatty acyl ligand different from the oleoyl-CoA occupied by VcFadR. Structural comparison indicates that both VcFadR and ValFadR consistently have an additional ligand-binding site (called site 2), which leads to more dramatic conformational-change of DNA-binding domain than that of the E. coli FadR (EcFadR). Isothermal titration calorimetry (ITC) analyses defines that the ligand-binding pattern of ValFadR (2:1) is distinct from that of EcFadR (1:1). Together with surface plasmon resonance (SPR), electrophoresis mobility shift assay (EMSA) demonstrates that ValFadR binds fabA, an important gene of unsaturated fatty acid (UFA) synthesis. The removal of fadR from V. cholerae attenuates fabA transcription and results in the unbalance of UFA/SFA incorporated into membrane phospholipids. Genetic complementation of the mutant version of fadR (Δ42, 136-177) lacking site 2 cannot restore the defective phenotypes of ΔfadR while the wild-type fadR gene and addition of exogenous oleate can restore them. Mice experiments reveals that VcFadR and its site 2 have roles in bacterial colonizing. Together, the results might represent an additional example that illustrates the Vibrio FadR-mediated lipid regulation and its role in pathogenesis

    Influence of barrier effect on barrier sheet pile wharf

    Get PDF
    This study aims to investigate the barrier effect of front wall-soil-barrier interactions in barrier sheet pile wharf structures. Berth 32 of the Jingtang Port was taken as the prototype structure, and the prototype observation experiment, centrifugal model test, and numerical calculation analysis were performed to study the influence of the length of the barrier pile, the spacing D between wall piles, and the net spacing L of the barrier pile on the barrier effect. The results show that, to maximize the barrier effect, the ratio N of the pile length of the full barrier pile to the depth of the front wall should be between 1.0 and 1.1. To maximize the barrier effect, the top elevation of the semi-barrier pile should not be excessively low. When the bottom elevation is fixed, the ratio of the length of the semi-barrier pile to the depth of the front wall is approximately N= 0.7. The change in the wall pile spacing D has a considerable impact on the barrier effect. Moreover, D has a logarithmic relationship to the horizontal displacement of the front wall. When D exceeds 3 m, the change in the barrier effect can be ignored. The part of the earth pressure shared by the sea and land sides of the barrier pile to the soil between the barrier pile and the barrier pile has a logarithmic relationship to the net spacing L of the barrier pile. The smaller the L, the better the barrier effect. When L exceeds 2 m, the earth pressure shared by the two parts tends to be average, and the barrier effect can be ignored

    Response of Gut Microbiota to Dietary Fiber and Metabolic Interaction With SCFAs in Piglets

    Get PDF
    Dietary fiber (DF) is increasingly thought to regulate diversity of piglet gut microbiota to alleviate weaning stress in piglets. This study was conducted to investigate the effects of DF on growth performance of piglets and composition of their gut microbiota, as well as the interaction between gut microbiota and short-chain fatty acids (SCFAs) in piglets. A total of 840 piglets were allocated to three dietary treatments consisting of a control group (CG), an alfalfa meal group (AG), and a commodity concentrated fiber group (OG) in a 30-day feeding trial. Gut mucosa and feces samples were used to determine bacterial community diversity by 16S rRNA gene amplicon sequencing. Fiber treatment had a positive effect on growth performance and metabolism of SCFAs in piglets, in particular, compared with CG, the diarrhea rate was significantly decreased, and the content of propionic acid (PA) in the cecum was markedly increased in AG. The Shannon indices of the jejunum microbiota in AG were higher than CG. At the genus level, compared to CG, in the duodenum, the relative abundance of Paenibacillus in AG and OG was higher; in the jejunum, the relative abundances of Bacillus, Oceanobacillus, Paenibacillus, Lactococcus, Enterococcus, and Exiguobacterium were higher, whereas the relative abundance of Mycoplasma was lower in AG; in the cecum, there was also lower relative abundance of Helicobacter in AG and OG, and furthermore, the relative abundance of Faecalibacterium in OG was higher than in CG and AG. Spearman correlation analysis showed that Pseudobutyrivibrio was positively correlated with acetic acid, PA, and butyric acid (BA), while Bacteroides and Anaerotruncus were negatively correlated with PA and BA. In addition, microbiota analyses among different intestine segments showed distinct differences in microbiota between the proximal and distal intestines. Bacteria in the proximal segments were mainly Firmicutes, while bacteria in the distal segments were mainly Bacteroidetes and Firmicutes. Overall, these findings suggested that DF treatment could reduce the diarrhea rate of piglets and had beneficial effects on gut health, which might be attributed to the alteration in gut microbiota induced by DF and the interaction of the gut microbiota with SCFAs

    MAPK Signaling Pathway Alters Expression of Midgut ALP and ABCC Genes and Causes Resistance to \u3cem\u3eBacillus thuringiensis\u3c/em\u3e Cry1Ac Toxin in Diamondback Moth

    Get PDF
    Insecticidal crystal toxins derived from the soil bacterium Bacillus thuringiensis (Bt) are widely used as biopesticide sprays or expressed in transgenic crops to control insect pests. However, large-scale use of Bt has led to field-evolved resistance in several lepidopteran pests. Resistance to Bt Cry1Ac toxin in the diamondback moth, Plutella xylostella (L.), was previously mapped to a multigenic resistance locus (BtR-1). Here, we assembled the 3.15 Mb BtR-1 locus and found high-level resistance to Cry1Ac and Bt biopesticide in four independent P. xylostella strains were all associated with differential expression of a midgut membrane-bound alkaline phosphatase (ALP) outside this locus and a suite of ATP-binding cassette transporter subfamily C (ABCC) genes inside this locus. The interplay between these resistance genes is controlled by a previously uncharacterized trans-regulatory mechanism via the mitogen-activated protein kinase (MAPK) signaling pathway. Molecular, biochemical, and functional analyses have established ALP as a functional Cry1Ac receptor. Phenotypic association experiments revealed that the recessive Cry1Ac resistance was tightly linked to down-regulation of ALP, ABCC2 and ABCC3, whereas it was not linked to up-regulation of ABCC1. Silencing of ABCC2 and ABCC3 in susceptible larvae reduced their susceptibility to Cry1Ac but did not affect the expression of ALP, whereas suppression of MAP4K4, a constitutively transcriptionally-activated MAPK upstream gene within the BtR-1 locus, led to a transient recovery of gene expression thereby restoring the susceptibility in resistant larvae. These results highlight a crucial role for ALP and ABCC genes in field-evolved resistance to Cry1Ac and reveal a novel trans-regulatory signaling mechanism responsible for modulating the expression of these pivotal genes in P. xylostella

    Effects of Remote Ischemic Preconditioning on Decreasing Troponin Release in Patients Not Taking Sulfonylureas After Cardiac Surgery – A Meta-Analysis

    Get PDF
    ABSTRACT Introduction: Remote ischemic preconditioning (RIPC) is a new noninvasive myocardial protection strategy that uses blood pressure cuf inflation to simulate transient non-fatal ischemia to protect the myocardium and reduce ischemia-reperfusion injury. Sulfonylureas may mask the effects of RIPC due to their cardioprotec-tive effect. This meta-analysis aimed to evaluate whether RIPC, in the absence of sulfonylureas, reduces troponin release in patients undergoing cardiac surgery. Methods: We conducted a meta-analysis of randomized controlled clinical trials to determine whether RIPC can reduce postoperative troponin release in cardiac surgery patients undergoing cardiopulmonary bypass without treatment with sulfonylureas. The data were normalized to equivalent units prior to the analysis. A random-effects model was used to provide more conservative estimate of the effects in the presence of known or unknown heterogeneity. Results: Six studies with a total of 570 participants were included. The analysis showed that troponin release was lower in the RIPC group than in the control group at six hours (test of standardized mean differences = 0, Z=3.64, P 60 minutes, RIPC reduced troponin release at six hours (Z=2.84, P=0.005), 24 hours (Z=2.64, P=0.008), and 48 hours (Z=2.87, P=0.004) postoperatively. Conclusion: In cardiac surgery patients who are not taking sulfonylureas, RIPC can reduce troponin release at six and 48 hours postoperatively; hence, RIPC may serve significant benefits in certain cardiac surgery patients
    corecore