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Dietary fiber (DF) is increasingly thought to regulate diversity of piglet gut microbiota to
alleviate weaning stress in piglets. This study was conducted to investigate the effects
of DF on growth performance of piglets and composition of their gut microbiota, as
well as the interaction between gut microbiota and short-chain fatty acids (SCFAs) in
piglets. A total of 840 piglets were allocated to three dietary treatments consisting of
a control group (CG), an alfalfa meal group (AG), and a commodity concentrated fiber
group (OG) in a 30-day feeding trial. Gut mucosa and feces samples were used to
determine bacterial community diversity by 16S rRNA gene amplicon sequencing. Fiber
treatment had a positive effect on growth performance and metabolism of SCFAs in
piglets, in particular, compared with CG, the diarrhea rate was significantly decreased,
and the content of propionic acid (PA) in the cecum was markedly increased in AG. The
Shannon indices of the jejunum microbiota in AG were higher than CG. At the genus
level, compared to CG, in the duodenum, the relative abundance of Paenibacillus in AG
and OG was higher; in the jejunum, the relative abundances of Bacillus, Oceanobacillus,
Paenibacillus, Lactococcus, Enterococcus, and Exiguobacterium were higher, whereas
the relative abundance of Mycoplasma was lower in AG; in the cecum, there was
also lower relative abundance of Helicobacter in AG and OG, and furthermore, the
relative abundance of Faecalibacterium in OG was higher than in CG and AG. Spearman
correlation analysis showed that Pseudobutyrivibrio was positively correlated with acetic
acid, PA, and butyric acid (BA), while Bacteroides and Anaerotruncus were negatively
correlated with PA and BA. In addition, microbiota analyses among different intestine
segments showed distinct differences in microbiota between the proximal and distal
intestines. Bacteria in the proximal segments were mainly Firmicutes, while bacteria in
the distal segments were mainly Bacteroidetes and Firmicutes. Overall, these findings
suggested that DF treatment could reduce the diarrhea rate of piglets and had beneficial
effects on gut health, which might be attributed to the alteration in gut microbiota
induced by DF and the interaction of the gut microbiota with SCFAs.
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INTRODUCTION

The high mortality and low growth performance of piglets during
the weaning period seriously affects production efficiency in
the pig industry. Stress caused by changes in environment and
feed as well as the immaturity of the digestive and immune
systems results in a decrease in feed intake of piglets and also
digestive disorders, leading to increased incidence of diarrhea
in piglets (Lallès et al., 2007). Heo et al. (2013) reported that
the occurrence of pathogenic diarrhea in piglets was mainly due
to the release of endotoxin by Escherichia coli that adhered to
gut epithelial cells. Breeders usually feed piglets with digestible
diets, such as milk by-products, animal protein, and cooked
rice, to prevent indigestible nutrients which are exploited by
pathogens in hindgut (Mateos et al., 2006). Antibiotics have been
recognized as one of the most successful therapies in medicine,
and are administered in both human and veterinary medicine.
However, the use of antibiotics is now debatable due to the
growing number of antibiotic-resistant bacteria within human
and animal gut microbiota. The application of antibiotics as part
of the feed not only increases the cost of farming, but also fails
to achieve the desired growth performance during the weaning
period (Berrocoso et al., 2013). Therefore, there is an urgent need
to find alternatives to antibiotics to both maintain piglet health at
the critical weaning period and preserve public health.

At present, breeders are trying to relieve weaning stress of
piglets through dietary fiber (DF). Studies have shown that DF
influences the physicochemical properties of chyme (Canibe and
Bach Knudsen, 2002), improving the morphology and micro-
ecological environment of the gut, stimulating the secretion of
digestive enzymes (Gerritsen et al., 2012), and promoting the
development and integrity of the digestive tract mucosa (Liu
et al., 2012). It has also been confirmed that DF contributes to
the development, health, and the micro-ecological balance of
piglet gut (Molist et al., 2010). Several studies have indicated that
the effect of fiber on piglet diarrhea depends on the amount of
fiber added and its physicochemical properties. Li and Zhang
(2006) increased the content of crude fiber (CF) to 5.3% in
the piglet diet by adding alfalfa meal and found that the fiber
could reduce the diarrhea rate of piglets by affecting water
absorption in the small intestine and inhibiting the growth of
pathogens. Gut microbiota, serving as an important barrier in the
host, play crucial roles in animal health and growth, including
digestion and fermentation of carbohydrates, production of
vitamins, maintenance of normal functions of the intestinal
villi, regulation of the immune responses, and protection from
pathogenic bacteria; however, gut microbiota also have effects on
the liver, brain, and even on the metabolism of fat and muscle
tissue, finally influencing the whole host metabolic network of
nutrient and energy (Schroeder and Bäckhed, 2016). DF cannot
be digested by host digestive enzymes but can be degraded into
monosaccharides and short-chain fatty acids (SCFAs) by gut
microbiota (Gresse et al., 2017). As the major energy source for
hindgut microbiota, DF is believed to have significant effects on
the composition and diversity of microbiota (Filippo and Hartl,
2010; Heinritz et al., 2016). Given that there are few studies
evaluating the microbial mechanism of DF on weaning piglet

health, the current research was undertaken to investigate the
effects of different DF on growth performance, the composition
and metabolites of gut and feces microbiota (GFM), as well as the
metabolic interaction between hindgut microbiota and SCFAs in
weaning piglets. This would provide some microbial mechanistic
insights into the application of different DF on weaning piglet
health.

MATERIALS AND METHODS

Experimental Design and Sampling
All experimental procedures in this study were approved by the
Institutional Animal Ethics Committee of Henan Agricultural
University. A total of 840 piglets (Duroc × Landrace × Large
White, age 35 days) with body weights of 9.26 ± 0.17 kg
were randomly allotted to three treatments, with each treatment
comprising four replicated pens of 70 piglets. The mixed
groups of male and female piglets were housed in slatted floor
indoor pens with access to feed and water ad libitum for
30 days under standard management conditions. All piglets
were supplied with feed formulated to meet NRC (2012)
recommendations. Experimental diets for each treatment were
as follows: control group (CG) with corn and soybean-meal
diet in which 2.27% CF was included; alfalfa meal group
(AG) with diets in which CG diet was partly replaced with
5% alfalfa meal and the CF content was 3.27%; commodity
concentrated fiber group (OG) with diets in which CG diet
was partly replaced with 2% commodity concentrated fiber and
the CF content was 3.27%. The detailed ingredient composition
and nutrient content of the investigated diets are presented in
Table 1. The average daily feed intake (ADFI), average daily gain
(ADG), feed to gain (F:G), mortality, and diarrhea rate were
recorded.

At the end of the experiment, one piglet in each replicate
was selected for sampling/processing. Feces samples were
obtained using sterilized equipment and were frozen in liquid
nitrogen. After fasting overnight, the gastrointestinal tract of each
piglet was removed immediately after slaughter and segments
(duodenum, jejunum, ileum, cecum, and colon) were identified
and ligated before separation. Sterile cold phosphate buffer was
used to wash the mucosa. Subsequently, mucosal samples from
the duodenum, jejunum, ileum, cecum, and colon were collected
by scraping the mucosa with a sterile glass microscope slide.
At the same time, samples of chyme from cecum and colon
sections were also collected. All samples were stored in sterile
cryopreservation tubes and immediately frozen at -80◦C until
further analysis. Then, three repeats were randomly selected from
each treatment to be sequenced, one individual per replicate
collecting six sample types (duodenum, jejunum, ileum, cecum,
colon, and feces).

DNA Extraction and 16S rRNA Gene
Sequencing
Microbial DNA was extracted from the digestive tract
(duodenum, jejunum, ileum, cecum, and colon) mucosa
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TABLE 1 | Ingredient and nutrient composition (%, as feed) of the experimental
diets.

Items Dieta

CG AG OG

Ingredient (%)

Corn 600.19 540.71 560.83

Soybean – puffed 120.00 120.00 120.00

Fermented soybean meal 50.00 50.00 50.00

Soybean meal 100.23 91.73 106.98

Alfalfa meal – 50.00 –

Commodity concentrated fiber – – 20.00

Fish meal 40.00 40.00 40.00

Whey powder 50.00 50.00 50.00

Soybean oil 8.41 26.26 20.94

Salt 1.50 1.50 1.50

Limestone powder 6.77 6.77 6.77

Calcium hydrogen phosphate 5.66 5.66 5.66

Lysine, 98% 3.78 3.78 3.78

Methionine, 98% 1.20 1.33 1.28

Zinc oxide, 75% 2.20 2.20 2.20

Premix compound 10.00 10.00 10.00

Total 1000.00 1000.00 1000.00

Nutrient composition

DEb, (MJ/kg) 14.64 14.64 14.64

CPb (%) 19.00 19.00 19.00

CFb (%) 2.27 3.38 3.37

Lysb (%) 1.38 1.38 1.39

Metb (%) 0.45 0.46 0.46

Cab (%) 0.75 0.82 0.75

Pb (%) 0.56 0.55 0.55

aCG, control group; AG, alfalfa meal group; OG, commodity concentrated fiber
group.
bDE, digestion energy; CP, crude protein; CF, crude fiber; Lys, lysine; Met,
methionine; Ca, calcium; P, phosphorus.

and feces samples using an E.Z.N.A R©. Soil DNA Kit (Omega Bio-
tek, Norcross, GA, United States) according to manufacturer’s
protocols. The final DNA concentration and purity were
determined by NanoDrop 2000 UV–vis spectrophotometer
(Thermo Scientific, Wilmington, NC, United States), and
DNA quality was checked by 1% agarose gel electrophoresis
(Yang et al., 2015). The V3–V4 hypervariable regions of
the bacterial 16S rRNA gene were amplified with primers
338F (5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R (5′-
GGACTACHVGGGTWTCTAAT-3′) by PCR (GeneAmp 9700,
ABI, United States; Singh et al., 2015) using the following
program: 3 min denaturation at 95◦C; 27 cycles of 30 s at 95◦C,
30 s annealing at 55◦C, and 45 s elongation at 72◦C; and a final
extension at 72◦C for 10 min. PCR reactions were performed in
triplicate with each 20 µL reaction mixture containing 4 µL of
5× FastPfu Buffer, 2 µL of 2.5 mM dNTPs, 0.8 µL of each primer
(5 µM), 0.4 µL FastPfu Polymerase, and 10 ng template DNA.
The resulting PCR products were extracted from a 2% agarose
gel and further purified using the AxyPrep DNA Gel Extraction
Kit (Axygen Biosciences, Union City, CA, United States) and

quantified using QuantiFluorTM-ST (Promega, United States)
according to the manufacturer’s protocol.

GenBank Accession Number
Purified amplicons were pooled in equimolar amounts and
paired-end sequenced (2 × 300), on an Illumina MiSeq
platform (Illumina, San Diego, CA, United States) according to
standard protocols, by Majorbio Bio-Pharm Technology Co. Ltd.
(Shanghai, China). The raw reads were deposited into the NCBI
Sequence Read Archive (SRA) database under accession number
SRP 121201.

Bioinformatics Analysis of Sequencing
Data
Raw fastq files were demultiplexed, quality-filtered by
Trimmomatic, and merged by FLASH with the following
criteria: (i) reads were truncated at any site receiving an average
quality score < 20 over a 50-bp sliding window; (ii) primers
were exactly matched allowing two nucleotide mismatching,
and reads containing ambiguous bases were removed; and (iii)
sequences whose overlap was longer than 10 bp were merged
according to their overlap sequence. Operational taxonomic
units (OTUs) were clustered with 97% similarity cutoff using
UPARSE (version 7.11), and chimeric sequences were identified
and removed using UCHIME. The taxonomy of each 16S rRNA
gene sequence was analyzed by RDP Classifier algorithm2 against
the Silva (SSU123) 16S rRNA database using a confidence
threshold of 70%. Biodiversity of the samples was calculated
with ACE, Chao1, and Shannon indices (Schloss et al., 2009).
The one-way analysis of molecular variance (AMOVA) method
was used to identify differences between groups (Schloss et al.,
2009). The shifts in the relative abundance of the bacterial phyla
were displayed by a heatmap (Kolde, 2015), which was modeled
with vegan package in R. Based on OTUs, Weighted-unifrac
principal coordinate analysis (PCoA; Lozupone et al., 2011)
and Bray–Curtis sample hierarchical cluster analysis were used
to summarize the composition of gut microbiota in different
parts of the digestive tract (Jiang et al., 2013). To determine the
effect of posterior segment microbiota interacting with SCFAs,
redundancy analysis (RDA) was performed at the genus level
using the R language vegan packet (RDA 2014; Mu et al., 2017).

Determination of SCFAs
The amount of SCFAs in cecum and colon contents were
determined using gas chromatography (GC) according to the
method of Alfa et al. (2017). The samples on a HP-88 column
(100 m long× 0.25 mm diameter and 0.2 µm film thickness) were
separated by using a TRACETM 1310 GC with flame ionization
detector (FID). The temperature program was 70◦C for 1 min,
then raised to 180◦C at 25◦C/min and held for 1 min, then raised
to 200◦C at 10◦C/min and held for 1 min, then raised to 220◦C
at 2◦C/min and held for 10 min, and finally raised to 240◦C at
20◦C/min and held for 6 min. Samples were run with a 20:1 split

1http://drive5.com/uparse/
2http://rdp.cme.msu.edu/
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TABLE 2 | Effects of different DF on pigleta growth performance.

Items Diet

CG AG OG

ADFIb, g 589.46 ± 39.91 560.43 ± 47.74 556.37 ± 71.25

ADGb, g 352.66 ± 39.24 341.39 ± 50.17 327.07 ± 50.56

F:Gb 1.68 ± 0.09 1.66 ± 0.15 1.71 ± 0.07

Mortality rate, % 4.3 ± 3.10 2.5 ± 2.94 3.9 ± 3.95

Diarrhea rate, % 1.4 ± 0.14a 0.9 ± 0.21b 1.2 ± 0.35ab

aN = 4 for each treatment. Different superscript lowercase letters within each row
mean significantly different (P < 0.05).
bADFI, average daily feed intake; ADG, average daily gain; F:G, feed:gain.

ratio and a 1.3 mL/min column flow. Hydrogen was used as the
carrier gas. The temperatures of the injector and detector were
270 and 290◦C, respectively.

Statistical Analysis
Statistical analyses were performed with the software SPSS 18.0
(IBM, New York, NY, United States). Data were evaluated by
one-way ANOVA, and the differences between the means were
assessed using Duncan’s test. P < 0.05 was considered statistically
significant.

RESULTS

Growth Performance and SCFA
Fermentation
The effect of different DF on piglet growth performance is
presented in Table 2. There were no differences in ADFI, ADG,
and F:G among treatments (P > 0.05). Compared with CG
treatment, the mortality rate of piglets in AG had a decreasing
trend (P > 0.05), while the diarrhea rate decreased significantly
(P < 0.05). The diarrhea rate of piglets in OG also had a
decreasing trend (P > 0.05) compared with CG treatment.

Different DF greatly influences the amount of SCFAs in the
cecum of piglets (Figure 1A). Compared with CG treatment,
there was an increasing trend in the amounts of acetic acid
(AA) and butyric acid (BA) in AG and OG, and the amounts
of propionic acid (PA) and isovaleric acid (ISOVA) in AG
significantly increased (P < 0.05). Furthermore, the amounts of
valeric acid (VA) and isobutyric acid (ISOBA) in AG significantly
increased compared to both CG and OG (P < 0.05). There were
no significant differences observed in the amounts of SCFAs in
the colon of piglets (P > 0.05; Figure 1B).

Characterization of Microbiota Across
the Gut and Feces
After removing incorrect and chimeric sequences, 2,033,322
sequencing reads were generated from the 54 samples. On
average, 37,654 sequences per sample were obtained, with an
average length of 443 bp. Using the criterion of 97% sequence
similarity at the species level, 1751 OTUs were identified,
all of which belonged to the bacteria domain according to

Greengenes classification. Finally, on average, 417 ± 116 OTUs
(Good’s coverage) per sample were identified. Rarefaction curves,
Shannon curves, and Chao 1 curves were employed to analyze
the richness and diversity of the microbiota community, as
well as reflecting the data volume and sequencing depth
(Supplementary Figure S1).

Diversity and Composition of Gut
Microbiota According to DF Treatment
From the analyses of the effects of different DF on the
richness and diversity of GFM in piglets, there were no
significant differences in Chao 1 indices of GFM (P > 0.05;
Supplementary Figure S2). The Shannon indices of the
jejunum microbiota (J) in AG increased significantly
compared with CG treatment (P = 0.031), but no significant
differences were observed in the other GFM (P > 0.05;
Figure 2).

At the phylum level (Supplementary Figure S3), the most
abundant bacteria were Firmicutes, Bacteroidetes, Tenericutes,
Proteobacteria, Actinobacteria, and Spirochaetes across GFM,
with the different phyla occupying different dominant positions
across GFM. In the microbiota of the duodenum (D), jejunum
(J), and ileum (I), Firmicutes, Proteobacteria, and Tenericutes
were the dominant phyla. Among these bacteria, Firmicutes
represented a ratio of 60–90%. Bacteroidetes, Firmicutes, and
Proteobacteria were the dominant phyla in cecum (Ce) and
colon (Co) microbiota where Bacteroidetes and Firmicutes
occupied 30–50%, respectively. The effects of different DF
on the microbiota community across GFM at the phylum
level are presented in Figure 3. The relative abundance of
Firmicutes in jejunum microbiota of the AG (AJ) increased
significantly compared with that in the CG (CJ) and the
commodity concentrated fiber group (OJ) (P = 0.002 and
P = 0.035, respectively), while the relative abundance of
Tenericutes in AJ decreased significantly compared with that
in CJ (P = 0.007). No differences were observed in the
microbiota community of D, I, Ce, Co, and F among treatments
(P > 0.05).

At the genus level (Supplementary Figure S4), the relative
abundance of the microbiota community across GFM also varied.
A total of 15 bacterial genera were detected in D, J, and I where the
relative abundance of these bacteria represented more than 1%;
Bacillus, Mycoplasma, Oceanobacillus, and Lactococcus were the
dominant genera. Moreover, 55 bacterial genera were detected
in Ce, Co, and F where the relative abundance of these bacteria
represented more than 1%. Among these bacteria, Prevotella_9,
Bacillus, Prevotellaceae_NK3B31_group, and Alloprevotella were
the dominant genera. The effects of different DF on the
microbiota community at the genus level across GFM are
presented in Figure 4. Different DF significantly affected the
relative abundance of different bacterial genera across GFM.
In the duodenum, the relative abundance of Paenibacillus in
the AG (AD) and the commodity concentrated fiber group
(OD) increased significantly compared with that in the CG
(CD; P = 0.009 and P = 0.046, respectively). In the jejunum,
different DF greatly influenced the relative abundance of
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FIGURE 1 | Effects of different DF on SCFAs fermentation of piglets. (A) SCFAs only cecum samples. (B) SCFAs only colon samples. AA, acetic acid; PA, propionic
acid; BA, butyric acid; ISOBA, isobutyric acid; VA, valeric acid; ISOVA, isovaleric acid. ∗0.01 < P < = 0.05, ∗∗0.001 < P < = 0.01, ∗∗∗P < = 0.001.

FIGURE 2 | The Shannon Diversity Index Analyses of Microbiota Community. (A) Duodenum samples. (B) Jejunum samples. (C) Ileum samples. (D) Cecum
samples. (E) Colon samples. (F) Feces samples. CD, AD, and OD: duodenum mucosal microbiota of control group, alfalfa meal group and commodity concentrated
fiber group, respectively. CJ, AJ, and OJ: jejunum mucosal microbiota of control group, alfalfa meal group and commodity concentrated fiber group, respectively. CI,
AI, and OI: ileum mucosal microbiota of control group, alfalfa meal group and commodity concentrated fiber group, respectively. CCe, ACe, and OCe: cecum
mucosal microbiota of control group, alfalfa meal group and commodity concentrated fiber group, respectively. CCo, ACo, and OCo: colon mucosal microbiota of
control group, alfalfa meal group and commodity concentrated fiber group, respectively. CF, AF, and OF: feces mucosal microbiota of control group, alfalfa meal
group and commodity concentrated fiber group, respectively. ∗0.01 < P < = 0.05, ∗∗0.001 < P < = 0.01, ∗∗∗P < = 0.001.

Bacillus, Oceanobacillus, Paenibacillus, Lactococcus, Enterococcus,
Exiguobacterium, and Mycoplasma; all these bacteria except for
Mycoplasma presented higher relative abundance in AJ than
that in CJ (P = 0.003, P = 0.003, P = 0.014, P < 0.001,
P = 0.034, and P = 0.001, respectively). The relative abundances
of Bacillus, Oceanobacillus, Paenibacillus, and Exiguobacterium
in AJ were also much higher than those in OJ (P = 0.046,

P = 0.040, P = 0.012, and P = 0.049, respectively). In addition,
the relative abundances of Paenibacillus and Exiguobacterium
in OJ were significantly higher than that in CJ (P = 0.048 and
P = 0.028, respectively). However, the relative abundance of
Mycoplasma in AJ decreased significantly compared with that
in CJ (P = 0.007). In the cecum, the relative abundance of
Helicobacter in the AG (ACe) and the commodity concentrated
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FIGURE 3 | The Composition Analysis of Microbiota Community at the Phyla Level. (A) Duodenum samples. (B) Jejunum samples. (C) Ileum samples. (D) Cecum
samples. (E) Colon samples. (F) Feces samples. CD, AD, and OD: duodenum mucosal microbiota of control group, alfalfa meal group and commodity concentrated
fiber group, respectively. CJ, AJ, and OJ: jejunum mucosal microbiota of control group, alfalfa meal group and commodity concentrated fiber group, respectively. CI,
AI, and OI: ileum mucosal microbiota of control group, alfalfa meal group and commodity concentrated fiber group, respectively. CCe, ACe, and OCe: cecum
mucosal microbiota of control group, alfalfa meal group and commodity concentrated fiber group, respectively. CCo, ACo, and OCo: colon mucosal microbiota of
control group, alfalfa meal group and commodity concentrated fiber group, respectively. CF, AF, and OF: feces mucosal microbiota of control group, alfalfa meal
group and commodity concentrated fiber group, respectively. ∗0.01 < P < = 0.05, ∗∗0.001 < P < = 0.01, ∗∗∗P < = 0.001.

FIGURE 4 | The Composition Analysis of Microbiota Community at the Genus Level. CD, AD, and OD: duodenum mucosal microbiota of control group, alfalfa meal
group, and commodity concentrated fiber group, respectively. CJ, AJ, and OJ: jejunum mucosal microbiota of control group, alfalfa meal group, and commodity
concentrated fiber group, respectively. CI, AI, and OI: ileum mucosal microbiota of control group, alfalfa meal group, and commodity concentrated fiber group,
respectively. CCe, ACe, and OCe: cecum mucosal microbiota of control group, alfalfa meal group, and commodity concentrated fiber group, respectively. CCo, ACo,
and OCo: colon mucosal microbiota of control group, alfalfa meal group, and commodity concentrated fiber group, respectively. CF, AF, and OF: feces mucosal
microbiota of control group, alfalfa meal group, and commodity concentrated fiber group, respectively. ∗0.01 < P < = 0.05, ∗∗0.001 < P < = 0.01, ∗∗∗P < = 0.001.

fiber group (OCe) decreased significantly compared with that
in the CG (CCe) (both P < 0.001). Furthermore, the relative
abundance of Faecalibacterium in OCe was much higher
than that in CCe and ACe (P = 0.003 and P = 0.004,
respectively).

To present the composition of the bacterial community
directly, the relative abundance of the microbiota community was
depicted by color intensity, and the community compositions
were further clustered according to the similarity of species or
relative abundance of samples, resulting in the heatmap presented
in Figure 5. The microbiota in D, J, and I clustered together,
as did the microbiota in Ce, Co, and F. It was observed that
Firmicutes played a predominant role in D, J, and I while
Bacteroidetes and Firmicutes were prevalent in Ce, Co, and F. In

addition, the heatmap indicated that the diversity of microflora
in Ce, Co, and F was much more varied than that in D,
J, and I.

Diversity and Composition of Gut
Microbiota Across the GFM
From the richness and diversity analyses of microbiota
community across the GFM of piglets, the Shannon and
Chao 1 indices of proximal intestine (D, J, and I) microbiota
decreased significantly compared with those of distal intestine
and feces (Ce, Co, and F) microbiota (Supplementary
Figure S5). Analysis of differences among the microbiota
community across GFM at the phylum and genus level are
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FIGURE 5 | Heatmap of the microbiota composition in the gut and feces microbiota at the genus level. The relationship among species is determined by the
complete clustering method with Bray–Curtis distance. The top tree showed the clustering relationship of samples. In the heatmap, green color means higher relative
abundance whereas white color signifies lower relative abundance. CD, AD, and OD: duodenum mucosal microbiota of control group, alfalfa meal group, and
commodity concentrated fiber group, respectively. CJ, AJ, and OJ: jejunum mucosal microbiota of control group, alfalfa meal group, and commodity concentrated
fiber group, respectively. CI, AI, and OI: ileum mucosal microbiota of control group, alfalfa meal group, and commodity concentrated fiber group, respectively. CCe,
ACe, and OCe: cecum mucosal microbiota of control group, alfalfa meal group, and commodity concentrated fiber group, respectively. CCo, ACo, and OCo: colon
mucosal microbiota of control group, alfalfa meal group, and commodity concentrated fiber group, respectively. CF, AF, and OF: feces mucosal microbiota of control
group, alfalfa meal group, and commodity concentrated fiber group, respectively.

presented in Supplementary Figure S6. There were differences
among GFM; in particular, there were significant differences
between small and large intestine microbiota. At the phylum
level, compared to distal intestine, the relative abundance of
Firmicutes in the proximal intestine was higher, while the
relative abundance of Bacteroidetes was lower. At the genus
level, compared to the distal intestine, the relative abundances
of Bacillus, Mycoplasma, Oceanobacillus, and Lactococcus
in the proximal intestine were higher, while the relative
abundances of Prevotella_9, Prevotellaceae_NK3B31_group,
Alloprevotella, anorank_f_Bacteroidales_S24-7_group, Faecali-
bacterium, Prevotella_1, Ruminococcaceae_UCG-014, norank_
o_Mollicutes_RF9, and Phascolarctobacterium were lower.
To further study similarities and differences among GFM,
cluster tree and PCoA analysis was conducted (Supplementary
Figure S7). It was clearly observed that the samples of the
proximal intestine were distinct from those in the distal intestine.

Association and Model Predictive
Analysis
Redundancy analysis was conducted based on all samples
of Ce and Co and their environmental factors (SCFAs,
pH; Figures 6A,B). The correlation between microbiota
distribution and environmental factors were as follows:
BA > PA > AA > pH > VA > ISOVA > ISOBA in Ce, and
BA > AA > PA > pH > ISOBA > VA > ISOVA in Co. In
addition, RDA indicated that there was positive correlation
among BA, PA, and AA, and negative correlation between
pH and these three major SCFAs. Moreover, the correlation
among these three major SCFAs is relatively tight in both
Ce and Co. Correlation analysis was conducted between the
top 50 bacterial genera and the environmental factors, and is
directly reflected by a heatmap (Figure 6C). The threshold
| R| > 0.4 is considered as having correlation. The results
indicated that Bacteroides is positively correlated with pH,

Frontiers in Microbiology | www.frontiersin.org 7 September 2018 | Volume 9 | Article 2344

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-02344 September 26, 2018 Time: 18:13 # 8

Liu et al. Composition and Diversity of Gut Microbiota in Piglets

FIGURE 6 | Association and model predictive analysis. (A) RDA targeting only cecum samples. (B) RDA targeting only colon samples. (C) Heatmap of the
correlation analysis was conducted between the top 50 bacterial genera and the environmental factors. AA, acetic acid; PA, propionic acid; BA, butyric acid; ISOBA,
isobutyric acid; VA, valeric acid; ISOVA, isovaleric acid. ∗0.01 < P < = 0.05, ∗∗0.001 < P < = 0.01, ∗∗∗P < = 0.001.

while Pseudobutyrivibrio, Megamonas, and Lactobacillus are
negatively correlated with pH. Pseudobutyrivibrio is positively
correlated with AA, while uncultured_f_Ruminococcaceae and
unclassified_f_Ruminococcaceae are negatively correlated with
this SCFA. Pseudobutyrivibrio is also positively correlated with
PA and BA, but Anaerotruncus and Bacteroides are negatively
correlated with them. Prevotella_1, Ruminococcaceae_UCG-005,
Prevotellaceae_NK3B31_group, Anaerovibrio, and Lachnos-
piraceae_NK4A136_group are positively correlated with ISOBA.
Prevotella_1, Prevotellaceae_NK3B31_group, and Prevotel-
laceae_UCG-003 are positively correlated with VA. Prevotel-
laceae_NK3B31_group is positively correlated with ISOVA,
but Faecalibacterium, Phascolarctobacterium, Lactobacillus, and
Megamonas are negatively correlated with this SCFA.

DISCUSSION

Attempts have been made to add fiber to the diet of weaning
piglets to make the piglets adapt quickly to the thicker feed

during the growing season (Molist et al., 2014). However, some
of the results concerning the effects of adding fiber to diets
on growth performance in piglets were inconsistent (Freire
et al., 2000; Hogberg and Lindberg, 2004; Jeaurond et al., 2008).
Lindberg (2014) also confirmed that the type and origin of
the fiber determined the effect of the fiber on the swine diet.
In our study, the addition of fiber from different sources to
piglet diets had no effects on ADFI, ADG, and F:G in piglets.
However, compared to the CG, the diarrhea rate of piglets fed
with alfalfa meal significantly reduced. From the perspective
of fermentability of the fiber, alfalfa meal is rich in insoluble
fiber (cellulose) but also has a little soluble fiber (pectins)
(Brambillasca et al., 2015). Similarly, the commercial fiber used
in this study is an insoluble, slowly fermented fiber. Gerritsen
et al. (2012) reported that the addition of 15% insoluble non-
starch polysaccharides (NSP) to the low-protein diet of piglets
had no effect on the performance of piglets, but promoted
development of the intestine and affected the colon microbiota.
In addition, previous studies have shown that insoluble NSP
can reduce the residence time of chyme in the gastrointestinal
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tract and alleviate the anorexia and digestive disorders of
piglets caused by gut stasis, thereby reducing diarrhea in piglets
(Molist et al., 2012). In the current study, the PA content in
the cecum was markedly increased by alfalfa meal treatment,
demonstrating that the fiber in the alfalfa meal appears to
have a prebiotic effect. The main fermentation products of DF
in the hindgut are SCFAs. Among them, AA, PA, and BA
are the most abundant, comprising 90–95% of SCFAs present
in the hindgut (Ríos-Covián et al., 2016). Fermentable fibers
such as oligosaccharides and soluble NSP are usually fermented
in the ileum, while the slowly fermented insoluble NSP can
provide a growth medium for the microbiota until the end
of the large intestine. It is well known that SCFAs play an
important role in maintaining the morphology and function
of epithelial cells. Butyrate is metabolized by hindgut cells as
the main energy source, and the rest can be transported to the
liver and used in different biosynthetic pathways. Propionate
is mainly involved in the process of gluconeogenesis (Zhang
Q. et al., 2016), while acetate and butyrate are predominantly
involved in lipid biosynthesis (den Besten et al., 2013; Ríos-
Covián et al., 2016). In addition, SCFAs act as specific G
protein-coupled receptor (GPR) signaling molecules and are
involved in the regulation of glucose and lipid metabolism
(den Besten et al., 2013). Furthermore, Shibata et al. (2017)
reported that SCFAs can decrease pH of the gut and inhibit
the colonization and growth of some pathogens such as E. coli
and Salmonella. The findings in the present study indicated
that alfalfa meal treatment could generate more SCFAs and
promote gut health of the piglets, which are closely correlated
with the decreased diarrhea rate of piglets in the alfalfa meal
treatment.

With the rapid development of sequencing technology
in recent years, more researchers are using Illumina MiSeq
sequencing which is lower in cost and has a higher sequencing
depth and coverage than 454 pyrosequencing (Fouhy et al.,
2015). In this study, we employed Illumina MiSeq sequencing
to investigate the effects of different DF on the richness and
diversity across GFM, and found that different DF had varied
influences on microbiota of the same intestinal segment. In
general, Chao1 and Shannon indices of GFM showed an
increasing trend under the fiber treatment. In particular, the
Shannon index of the jejunum microbiota was significantly
increased by alfalfa meal treatment, indicating that fiber
treatment could increase the richness and diversity of GFM,
and subsequently promote the health of piglets. Gresse et al.
(2017) also reported that the addition of a certain amount of
fiber to the basal diet of piglets could increase the diversity of
GFM.

Dietary fiber plays an important role in maintaining gut
microbiota balance and gut health. As Castillo et al. (2007)
reported, the host gut microbiota vary in response to the
composition of DF due to the specific substrate preference
of the bacteria. Therefore, the composition of gut microbiota
could be regulated by supplementation with specific DF. Zhang
D. et al. (2016) have shown that fiber from alfalfa sources
in piglet diets can regulate gut microbiota and promote
gut health. In this study, analysis of microbiota data at

phylum level showed that alfalfa meal treatment significantly
increased the relative abundance of Firmicutes and decreased
the relative abundance of Tenericutes in the jejunum. These
changes seemed to have a positive effect on gut health of
piglets. This may be explained by the fact that Firmicutes
mainly includes beneficial bacteria, while Tenericutes mainly
includes harmful bacteria. Further analysis at the genus level
indicated that DF treatment significantly increased the relative
abundance of Paenibacillus, Bacillus, Oceanobacillus, Lactococcus,
Enterococcus, Exiguobacterium, and Faecalibacterium, while
significantly decreasing the relative abundance of Helicobacter
and Mycoplasma. Numerous studies have reported on the role
of these bacterial genera in gut health. Members of the genus
Paenibacillus are able to produce antibacterial and antifungal
compounds against plant and animal pathogens (Youngryun
et al., 2000). Bacillus, Lactococcus, and Enterococcus faecalis have
beneficial effects on reducing mortality, forming antimicrobial
compounds, inhibiting the growth of pathogens, and regulating
activation of the immune system (Lee and Kim, 2011; Hu
et al., 2015). Faecalibacterium is involved in butyrate synthesis,
which is the main nutrient for the regeneration and repair of
gut epithelial cells (Lopezsiles et al., 2017). However, infection
with Helicobacter is one of the major inducers of chronic
active gastritis and peptic ulcer (Heimesaat et al., 2014). The
family Mycoplasmataceae is known to infect pigs (Deblanc et al.,
2016). In this study, there was a high relative abundance of
Mycoplasma sualvi and Helicobacter in the pigs consuming
control feed, which might result in gut inflammation, and
subsequently piglet diarrhea. In conclusion, alteration in gut
microbiota induced by DF treatment resulted in an improvement
in gut health, potentially explaining the reduction of piglet
diarrhea.

Interestingly, DF could regulate the gut microbiota on one
hand, while on the other hand, some bacteria were also
involved in the metabolic processing of DF. In the current
study, the amounts of Exiguobacterium and Paenibacillus in
fiber treatment significantly increased. Exiguobacterium plays key
roles in the fermentation of cellulose and the transglycosylation
of sugars because of its high β-glucosidase activity (Gao et al.,
2015). Paenibacillus sp. HY-8 has high activity of GH11β-1,4-
xylanase and extracellular endo-β-1,4-mannanase, promoting
the degradation of xylan and mannan (Heo et al., 2006; Kim
et al., 2017). Similarly, Zhao et al. (2018) found that high
insoluble DF increased the relative abundance of fiber-degrading
bacteria in pig feces. Further study on the correlation analysis
of fermentation products of DF (SCFAs) and microbiota could
provide additional insights into their interactions.

From the perspective of the diversity of microbiota
in different parts of the intestines, this study indicated
that the gut microbiota varied greatly between proximal
and distal intestines, but the difference between adjacent
intestinal segments was relatively small. In the proximal
intestine, the predominant microbiota was Firmicutes, mainly
containing Bacillus, Mycoplasma, Oceanobacillus, Lactococcus,
and other organisms. For the distal intestine, the prevailing
microbiota were Bacteroidetes and Firmicutes, including
Prevotella_9, Prevotellaceae_NK3B31_group, Alloprevotella,
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anorank_f_Bacteroidales_S24-7_group, Faecalibacterium, Prevo-
tella_1, Ruminococcaceae_UCG-014, norank_o_Mollicutes_RF9,
Phascolarctobacterium, and so on. These results were consistent
with the distribution of gut microbiota of other species (Mu
et al., 2017). The observed differences in microbiota between
proximal and distal intestines were closely related to the function
and environment of different intestine segments. The function
of the proximal segment is mainly digestion and absorption of
protein, fat, and starch, while the hindgut is a strictly anaerobic
environment; therefore, the majority of bacteria colonizing the
posterior segment are strict anaerobes and facultative anaerobes.
DF can be decomposed by microbiota fermentation in the
hindgut to generate SCFAs as energy for epithelial cells, which
was in agreement with the increase of SCFAs in the cecum and
colon.

The micro-ecosystem of the posterior segment of the pig
gut is very complicated as approximately 400–500 species and
about 1012 microbiota per gram of intestine exist in this segment
(Castillo et al., 2007). To date, studies have mainly focused on
the species and characteristics of porcine posterior hyphae-
degrading bacteria (Shuchi et al., 2013; Christopherson et al.,
2014), and there is limited research on the correlation between
hindgut fiber-degrading bacteria and SCFAs generated by fiber
fermentation. Taking into account that specific microbiota in
the gut may be involved in the digestion and metabolism of
the fiber, further investigations were performed in the current
study to analyze the metabolic interaction of gut microbiota
with fermentation products of DF in the hindgut. Using
RDA/CCA analysis, AA, PA, and BA were significantly associated
with cecum and colon microbiota. Furthermore, Spearman
correlation analysis on the top 50 microbiota genera and the
environmental factors in the hindgut showed that the microbiota
bacteria with positive effects on SCFAs were Pseudobutyrivibrio,
Ruminococcaceae_UCG-005, Prevotellaceae_NK3B31_group,
Lachnospiraceae_NK4A136_group, Anaerovibrio, Prevotellaceae_
UCG-003, and so on, while the microbiota negatively correlated
with SCFAs were Bacteroides and Anaerotruncus. Previous
research found that Bacteroides are the most prevalent anaerobic
bacteria in the hindgut. Bacteroides fragilis comprises only
2% of the total Bacteroides in the gut but causes more than
70% of Bacteroides infections. In contrast, Pseudobutyrivibrio
decomposes various carbohydrates, mainly generating BA as well
as formic acid and lactic acid (Zhang et al., 2017). The metabolic
process of the family Ruminococcaceae is a typical type of mixed
fermentation, producing AA, formic acid, and a small amount of
lactic acid (Biddle et al., 2013). The main fermentation products
generated by Prevotella are AA, succinic acid, a small amount
of ISOBA, ISOVA, and lactic acid (Kovatcheva-Datchary et al.,
2015). All of these investigations in our study suggested that
specific bacteria in the hindgut were involved in the process
of digestion and metabolism of the DF, subsequently affecting
generation of SCFAs and inhibiting colonization of some harmful
bacteria, and finally possibly influencing the whole network of
nutrient and energy metabolism, which was in agreement with
the reports of Lin et al. (2017). However, the interaction of gut
microbiota with SCFAs and their response mechanism to DF
requires further study.

CONCLUSION

Diets containing alfalfa meal and commodity concentrated
fiber had positive effects on growth performance and SCFAs
metabolism of piglets. In particular, the diarrhea rate of
piglets was significantly decreased, and the content of PA
in the cecum was markedly increased by AG treatment.
Furthermore, DF had beneficial effects on bacterial richness
and diversity, as well as gut microbiota composition. Piglets
with fiber treatment had greater proportions of beneficial
bacteria and fiber-degrading bacteria, whereas harmful bacteria
were significantly decreased. Further investigation indicated
that there were close metabolic interactions between hindgut
microbiota and SCFAs. These results suggested that DF reduced
the diarrhea rate of piglets and had prebiotic effects on
gut health, which might be attributed to the alteration in
gut microbiota induced by DF and their interaction with
SCFAs. In addition, the microbiota composition of gut and
feces samples in piglets was systematically analyzed to provide
theoretical support for the findings of microbiota differences
between the proximal and distal intestines. These findings
will facilitate the development of strategies for the regulation
of gut microbiota through DF to improve piglet health and
productivity.
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