3,461 research outputs found

    CDK5RAP3 is a novel repressor of p14ARF in hepatocellular carcinoma cells

    Get PDF
    CDK5 regulatory subunit associated protein 3 (CDK5RAP3) is a novel activator of PAK4 and processes important pro-metastatic function in hepatocarcinogenesis. However, it remains unclear if there are other mechanisms by which CDK5RAP3 promotes HCC metastasis. Here, we showed that in CDK5RAP3 stable knockdown SMMC-7721 HCC cells, p14(ARF) tumor suppressor was upregulated at protein and mRNA levels, and ectopic expression of CDK5RAP3 was found to repress the transcription of p14(ARF). Using chromatin immunoprecipitation assay, we demonstrated that CDK5RAP3 bound to p14(ARF) promoter in vivo. Furthermore, knockdown of p14(ARF) in CDK5RAP3 stable knockdown HCC cells reversed the suppression of HCC cell invasiveness mediated by knockdown of CDK5RAP3. Taken together, our findings provide the new evidence that overexpression of CDK5RAP3 promotes HCC metastasis via downregulation of p14(ARF).published_or_final_versio

    Tectonic affinity of the west Qinling terrane (central China): North China or Yangtze?

    Get PDF
    [33] Neogene (̃14 Ma) basaltic magmatism has occurred in west Qinling, at the northeastern corner of the Tibetan Plateau. Furthermore, U-Pb ages and Hf isotopic data of xenocrystic zircons indicate that the unexposed Neoarchean (2.7-2.5 Ga) basement beneath the Phanerozoic outcrops in west Qinling has affinities with the southern margin of the north China block. The basement has a complex evolution, including the addition of juvenile mantle material at ̃2.7- 2.4 Ga and 1.1-0.8 Ga and reworking at ̃1.8 Ga and possibly at 1.4 Ga. Phanerozoic thermal events at 320-300 Ma, 230 Ma, and 160 Ma also have affected the basement. We interpret the west Qinling orogenic terrane as originally separated from the north China block, joined to the northern Yangtze block during the Meso-Neoproterozoic, and finally involved in the northward subduction and collision of the Yangtze block in the Paleozoic and early Mesozoic and subsequent lithospheric extension in the Jurassic. © 2010 by the American Geophysical Union.published_or_final_versio

    A predictive model of users’ behavior and values of smart energy meters using PLS-SEM

    Get PDF
    © Springer Nature Switzerland AG 2020. A smart energy metering system is an IoT device that connects several electrical household devices and record, monitor, estimate, control in-house energy consumption in a real-time basis. Although smart energy meters have great capabilities, this technology is still in infancy stages in many developing countries, and little is known about what perceived values are associated with smart meters from residents’ perspectives. Therefore, this research aimed to fill this gap by examining the impact of six different types of perceived values on residents’ intentions to use smart meters in UAE. The study followed a quantitative approach by gathering 266 survey responses which were tested by using Partial Least Squares-Structural Equation Modeling (PLS-SEM). The statistical results genuinely indicated that perceived epistemic values, environmental values, emotional values, and convenience values can significantly impact residents’ intention to use smart meter, whereas social values and monetary values found to have no significant impact on their intentions to use this technology. Theoretical and practical implications are indicated, and directions of future research are specified afterwards

    An exact expression to calculate the derivatives of position-dependent observables in molecular simulations with flexible constraints

    Get PDF
    In this work, we introduce an algorithm to compute the derivatives of physical observables along the constrained subspace when flexible constraints are imposed on the system (i.e., constraints in which the hard coordinates are fixed to configuration-dependent values). The presented scheme is exact, it does not contain any tunable parameter, and it only requires the calculation and inversion of a sub-block of the Hessian matrix of second derivatives of the function through which the constraints are defined. We also present a practical application to the case in which the sought observables are the Euclidean coordinates of complex molecular systems, and the function whose minimization defines the constraints is the potential energy. Finally, and in order to validate the method, which, as far as we are aware, is the first of its kind in the literature, we compare it to the natural and straightforward finite-differences approach in three molecules of biological relevance: methanol, N-methyl-acetamide and a tri-glycine peptideComment: 13 pages, 8 figures, published versio

    Chronic adiponectin deficiency leads to Alzheimer’s disease-like cognitive impairments and pathologies through AMPK inactivation and cerebral insulin resistance in aged mice

    Get PDF
    BACKGROUND: Insulin resistance is the major pathogenesis underlying type 2 diabetes mellitus (T2DM) and these patients have doubled risk of Alzheimer's disease (AD). Increasing evidence suggests that insulin resistance plays an important role in AD pathogenesis, possibly due to abnormal GSK3β activation, causing intra- and extracellular amyloid-beta (Aβ) accumulation. Adiponectin (APN) is an adipokine with insulin-sensitizing and anti-inflammatory effects. Reduced circulatory APN level is associated with insulin resistance and T2DM. The role of APN in AD has not been elucidated. In this study, we aim to examine if adiponectin deficiency would lead to cerebral insulin resistance, cognitive decline and Alzheimer's-like pathology in mice. METHODS: To study the role of adiponectin in cognitive functions, we employed adiponectin-knockout (APN-KO) mice and demonstrated chronic APN deficiency in their CNS. Behavioral tests were performed to study the cognitions of male APN-KO mice. Brains and tissue lysates were collected to study the pathophysiological and molecular changes in the brain of APN-KO mice. SH-SY5Y neuroblastoma cell line was used to study the molecular mechanism upon APN and insulin treatment. RESULTS: Aged APN-deficient mice displayed spatial memory and learning impairments, fear-conditioned memory deficit as well as anxiety. These mice also developed AD pathologies including increased cerebral Aβ42 level, Aβ deposition, hyperphosphorylated Tau proteins, microgliosis and astrogliosis with increased cerebral IL-1β and TNFα levels that associated with increased neuronal apoptosis and reduced synaptic proteins levels, suggesting APN deficiency may lead to neuronal and synaptic loss in the brain. AD pathologies-associated APN-KO mice displayed attenuated AMPK phosphorylation and impaired insulin signaling including decreased Akt induction and increased GSK3β activation in the hippocampus and frontal cortex. Aged APN-KO mice developed hippocampal insulin resistance with reduced pAkt induction upon intracerebral insulin injection. Consistently, APN treatment in SH-SY5Y cells with insulin resistance and overexpressing Aβ induce higher pAkt levels through AdipoR1 upon insulin treatment whereas the induction was blocked by compound C, indicating APN can enhance neuronal insulin sensitivity through AMPK activation. CONCLUSION: Our results indicated that chronic APN deficiency inactivated AMPK causing insulin desensitization and elicited AD-like pathogenesis in aged mice which also developed significant cognitive impairments and psychiatric symptoms.published_or_final_versio

    Feedback control architecture and the bacterial chemotaxis network.

    Get PDF
    PMCID: PMC3088647This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Bacteria move towards favourable and away from toxic environments by changing their swimming pattern. This response is regulated by the chemotaxis signalling pathway, which has an important feature: it uses feedback to 'reset' (adapt) the bacterial sensing ability, which allows the bacteria to sense a range of background environmental changes. The role of this feedback has been studied extensively in the simple chemotaxis pathway of Escherichia coli. However it has been recently found that the majority of bacteria have multiple chemotaxis homologues of the E. coli proteins, resulting in more complex pathways. In this paper we investigate the configuration and role of feedback in Rhodobacter sphaeroides, a bacterium containing multiple homologues of the chemotaxis proteins found in E. coli. Multiple proteins could produce different possible feedback configurations, each having different chemotactic performance qualities and levels of robustness to variations and uncertainties in biological parameters and to intracellular noise. We develop four models corresponding to different feedback configurations. Using a series of carefully designed experiments we discriminate between these models and invalidate three of them. When these models are examined in terms of robustness to noise and parametric uncertainties, we find that the non-invalidated model is superior to the others. Moreover, it has a 'cascade control' feedback architecture which is used extensively in engineering to improve system performance, including robustness. Given that the majority of bacteria are known to have multiple chemotaxis pathways, in this paper we show that some feedback architectures allow them to have better performance than others. In particular, cascade control may be an important feature in achieving robust functionality in more complex signalling pathways and in improving their performance

    Understanding the nature of "superhard graphite"

    Get PDF
    Numerous experiments showed that on cold compression graphite transforms into a new superhard and transparent allotrope. Several structures with different topologies have been proposed for this phase. While experimental data are consistent with these models, the only way to solve this puzzle is to find which structure is kinetically easiest to form. Using state-of-the-art molecular-dynamics transition path sampling simulations, we investigate kinetic pathways of the pressure-induced transformation of graphite to various superhard candidate structures. Unlike hitherto applied methods for elucidating nature of superhard graphite, transition path sampling realistically models nucleation events necessary for physically meaningful transformation kinetics. We demonstrate that nucleation mechanism and kinetics lead to MM-carbon as the final product. WW-carbon, initially competitor to MM-carbon, is ruled out by phase growth. Bct-C4_4 structure is not expected to be produced by cold compression due to less probable nucleation and higher barrier of formation

    Immunodetection of nmt55/p54(nrb) isoforms in human breast cancer

    Get PDF
    BACKGROUND: We previously identified and characterized a novel 55 kDa nuclear protein, termed nmt55/p54(nrb), whose expression was decreased in a subset of human breast tumors. The objective of this study was to determine if this reduced expression in human breast tumors was attributed to the regulation of mRNA transcription or the presence of altered forms of this protein. RESULTS: Northern blot analysis and ribonuclease protection assay indicated that nmt55/p54(nrb) mRNA is expressed at varying levels in estrogen receptor positive (ER+) and estrogen receptor negative (ER-) human breast tumors suggesting that reduced expression of nmt55/p54(nrb) protein in ER- tumors was not due to transcriptional regulation. To determine if multiple protein isoforms are expressed in breast cancer, we utilized Western blot and immunohistochemical analyses, which revealed the expression of an nmt55/p54(nrb) protein isoform in a subset of ER+ tumors. This subset of ER+ human breast tumors expressed an altered form of nmt55/p54(nrb) that was undetectable with an amino-terminal specific antibody suggesting that this isoform contains alterations or modifications within the amino terminal domain. CONCLUSIONS: Our study indicates that nmt55/p54(nrb) protein is post-transcriptionally regulated in human breast tumors leading to reduced expression in ER- tumors and the expression of an amino terminal altered isoform in a subset of ER+ tumors. The potential involvement of nmt55/p54(nrb) in RNA binding and pre-mRNA splicing may be important for normal cell growth and function; thus, loss or alteration of protein structure may contribute to tumor growth and progression
    corecore