114 research outputs found

    Is ultrasound combined with computed tomography useful for distinguishing between primary thyroid lymphoma and Hashimoto’s thyroiditis?

    Get PDF
    Introduction: The aim of the study is to investigate the usefulness of ultrasound combined with computed tomography (CT) for distinguishing between primary thyroid lymphoma (PTL) and Hashimoto’s thyroiditis (HT). Material and methods: The investigation was conducted retrospectively in 80 patients from January 2000 to July 2018. All patients underwent pathological tests to be classified into one of two groups: PTL group and HT group. The cut-off value of CT density was determined using receiver-operating characteristic (ROC) curve analysis. The accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of diagnosis for thyroid by CT alone, ultrasound alone, and the combination of CT plus ultrasound were calculated. Results: Of the 80 study patients, 27 patients were PTL and 53 patients were HT. Mean CT density had a sensitivity of 90.6% and a specificity of 88.9% at a cut-off value of 53.5 HU, with area under the curve (AUC) 0.88. Ultrasound combined with CT had the highest specificity, accuracy, and PPV compared with CT alone and ultrasound alone (p value < 0.05). Conclusions: Features such as extremely hypoechogenicity, enhanced posterior echo, cervical lymphadenopathy in ultrasound image, and linear high-density strand signs, and very low density in CT imaging have high sensitivity and specificity in thyroid lymphoma. Therefore, ultrasound combined with CT may be useful for distinguishing between PTL and HT.

    Gradient elution LC-ESI-MS determination of tramadol in rat plasma

    Get PDF
    A sensitive and simple liquid chromatography/electrospray mass spectrometry (LC-ESI-MS) method for determination of tramadol in rat plasma using one-step protein precipitation was developed. After addition of ketamine as internal standard (IS), protein precipitation by acetonitrile was used as sample preparation. Chromatographic separation was achieved on an SB-C18 (2.1 mm × 50 mm, 3.5 μm) column with methanol-0.1 % formic acid as mobile phase with gradient elution. Electrospray ionization (ESI) source was applied and operated in positive ion mode; selected ion monitoring (SIM) mode was used to quantification using target fragment ions m/z 264.0 for tramadol and m/z 237.8 for the IS. Calibration plots were linear over the range of 5-500 ng/mL for tramadol in rat plasma. Lower limit of quantification (LLOQ) for tramadol was 5 ng/mL. Mean recovery of tramadol from plasma was in the range 92.8 %-97.4 %. RSD of intra-day and inter-day precision were both less than 10 %. This method is simple and sensitive enough to be used in pharmacokinetic research for determination of tramadol in rat plasma.Colegio de Farmacéuticos de la Provincia de Buenos Aire

    Full-Length Transcriptome Analysis Reveals Candidate Genes Involved in Terpenoid Biosynthesis in Artemisia argyi

    Get PDF
    Artemisia argyi is an important medicinal plant widely utilized for moxibustion heat therapy in China. The terpenoid biosynthesis process in A. argyi is speculated to play a key role in conferring its medicinal value. However, the molecular mechanism underlying terpenoid biosynthesis remains unclear, in part because the reference genome of A. argyi is unavailable. Moreover, the full-length transcriptome of A. argyi has not yet been sequenced. Therefore, in this study, de novo transcriptome sequencing of A. argyi's root, stem, and leaf tissues was performed to obtain those candidate genes related to terpenoid biosynthesis, by combining the PacBio single-molecule real-time (SMRT) and Illumina sequencing NGS platforms. And more than 55.4 Gb of sequencing data and 108,846 full-length reads (non-chimeric) were generated by the Illumina and PacBio platform, respectively. Then, 53,043 consensus isoforms were clustered and used to represent 36,820 non-redundant transcripts, of which 34,839 (94.62%) were annotated in public databases. In the comparison sets of leaves vs roots, and leaves vs stems, 13,850 (7,566 up-regulated, 6,284 down-regulated) and 9,502 (5,284 up-regulated, 4,218 down-regulated) differentially expressed transcripts (DETs) were obtained, respectively. Specifically, the expression profile and KEGG functional enrichment analysis of these DETs indicated that they were significantly enriched in the biosynthesis of amino acids, carotenoids, diterpenoids and flavonoids, as well as the metabolism processes of glycine, serine and threonine. Moreover, multiple genes encoding significant enzymes or transcription factors related to diterpenoid biosynthesis were highly expressed in the A. argyi leaves. Additionally, several transcription factor families, such as RLK-Pelle_LRR-L-1 and RLK-Pelle_DLSV, were also identified. In conclusion, this study offers a valuable resource for transcriptome information, and provides a functional genomic foundation for further research on molecular mechanisms underlying the medicinal use of A. argyi leaves

    Synthesis of Flower-Like AgI/BiOCOOH p-n Heterojunctions With Enhanced Visible-Light Photocatalytic Performance for the Removal of Toxic Pollutants

    Get PDF
    In this study, flower-like AgI/BiOCOOH heterojunctions were constructed through a two-step procedure involving the solvothermal synthesis of BiOCOOH microflowers followed by AgI modification using a precipitation method. These novel photocatalysts were systematically examined by XRD, UV–vis DRS, SEM, TEM, EDS, and PL spectroscopy techniques. The AgI/BiOCOOH heterojunction were studied as a decent photocatalyst for the removal of the industrial dye (rhodamine B, and methyl blue) and antibiotic (tetracycline) under visible light. The AgI/BiOCOOH heterojunctions are much more active than bare BiOCOOH, and AgI, which could be ascribed to the improved separation of charge carriers, resulting from the formation of p-n heterojunction between two constituents. The holes (h+) and superoxide radical (•O2-) were detected as the main active species responsible for the pollutant degradation. The results showed that a highly efficient visible-light-driven photocatalytic system was developed for the decomposition of toxic pollutants

    Regulating Anger under Stress via Cognitive Reappraisal and Sadness

    Full text link
    Previous studies have reported the failure of cognitive emotion regulation (CER), especially in regulating unpleasant emotions under stress. The underlying reason for this failure was the application of CER depends heavily on the executive function of the prefrontal cortex (PFC), but this function can be impaired by stress-related neuroendocrine hormones. This observation highlights the necessity of developing selfregulatory strategies that require less top-down cognitive control. Based on traditional Chinese philosophy and medicine, which examine how different types of emotions promote or counteract one another, we have developed a novel emotion regulation strategy whereby one emotion is used to alter another. For example, our previous experiment showed that sadness induction (after watching a sad film) could reduce aggressive behavior associated with anger [i.e., “sadness counteracts anger” (SCA)] (Zhan et al., 2015). Relative to the CER strategy requiring someone to think about certain cognitive reappraisals to reinterpret the meaning of an unpleasant situation, watching a film or listening to music and experiencing the emotion contained therein seemingly requires less cognitive effort and control; therefore, this SCA strategy may be an alternative strategy that compensates for the limitations of cognitive regulation strategies, especially in stressful situations. The present study was designed to directly compare the effects of the CER and SCA strategy in regulating anger and anger-related aggression in stressful and non-stressful conditions. Participants’ subjective feeling of anger, anger-related aggressive behavior, skin conductance, and salivary cortisol and alpha-amylase levels were measured. Our findings revealed that acute stress impaired one’s ability to use CR to control angry responses provoked by others, whereas stress did not influence the efficiency of the SCA strategy. Compared with sadness or neutral emotion induction, CER induction was found to reduce the level of subjective anger more, but this difference only existed in non-stressful conditions. By contrast, irrespective of stress, the levels of aggressive behavior and related skin conductance after sadness induction were both significantly lower than those after CER induction or neutral emotion induction, thu

    Sparse online learning of image similarity

    Get PDF
    Ministry of Education, Singapore under its Academic Research Funding Tier

    Facile synthesis of single atom electrocatalysts via a condensation-carbonization process

    Get PDF
    The general and cost-effective synthesis of single atom electrocatalysts (SAECs) still remains a great challenge. Herein, we report a general synthetic protocol for the synthesis of SAECs via a simple condensation-carbonization process, in which furfural and cyanamide were condensation polymerized in the presence of polystyrene nanospheres and metal ions, followed by a pyrolysis to N-doped carbon nanosheets (NCNSs) supported SAECs. Six types of SAECs containing platinum, palladium, gold, nickel, cobalt and iron were synthesized to demonstrate the generality of the synthesis protocol. This methodology affords a facile solution to the trade-off between support conductivity and metal loading of SAECs by optimizing the ratio of carbon/nitrogen precursors, i.e., furfural furfuryl and cyanamide. The presence of single metal atoms was confirmed by high-angle annular dark field scanning transmission electron microscopy and X-ray absorption fine structure measurements. The three-dimensional distribution of single platinum atoms was vividly revealed by depth profile analysis in the scanning transmission electron microscope. The resulting SAECs showed excellent performance for glycerol electro-oxidation and water splitting in alkaline solutions. Notably, Pt/NCNs possessed an unprecedent mass-normalized current density of 5.3 A per milligram of platinum, which is 32 times that of the commercial Pt/C catalyst. Density functional theory calculations were conducted to reveal the adsorption behavior of glycerol over the SAECs. Using Ni/NCNSs and Co/NCNSs as anodic and cathodic electrocatalysts, we constructed a solar panel powered electrolytic cell for overall water splitting, leading to an overall energy efficiency of 8.8%, which has been among one of the largest solar-to-hydrogen conversion efficiencies reported in the literature

    ASSVd infection inhibits the vegetative growth of apple trees by affecting leaf metabolism

    Get PDF
    Apple scar skin viroid (ASSVd) can infect apple trees and cause scar skin symptoms. However, the associated physiological mechanisms are unclear in young saplings. In this study, ASSVd-infected and control ‘Odysso’ and ‘Tonami’ apple saplings were examined to clarify the effects of ASSVd on apple tree growth and physiological characteristics as well as the leaf metabolome. The results indicated that leaf ASSVd contents increased significantly after grafting and remained high in the second year. Leaf size, tree height, stem diameter, branch length, and leaf photosynthetic efficiency decreased significantly in viroid-infected saplings. In response to the ASSVd infection, the chlorophyll a and b contents decreased significantly in ‘Odysso’, but were unchanged in ‘Tonami’. Moreover, the N, P, K, Fe, Mn, and Ca contents decreased significantly in the leaves of viroid-infected ‘Odysso’ or ‘Tonami’. Similarly, the CAT and POD contents decreased significantly in the viroid-infected saplings, but the SOD content increased in the viroid-infected ‘Tonami’ saplings. A total of 15 and 40 differentially abundant metabolites were respectively identified in the metabolome analyses of ‘Odysso’ and ‘Tonami’ leaves. Specifically, in the viroid-infected ‘Odysso’ and ‘Tonami’ samples, the L-2-aminobutyric acid, 6″-O-malonyldaidzin, and D-xylose contents increased, while the coumarin content decreased. These metabolites are related to the biosynthesis of isoflavonoids and phenylpropanoids as well as the metabolism of carbohydrates and amino acids. These results imply that ASSVd affects apple sapling growth by affecting physiological characteristics and metabolism of apple leaves. The study data may be useful for future investigations on the physiological mechanisms underlying apple tree responses to ASSVd

    Hemoglobin-derived Fe-Nx-S species supported by bamboo-shaped carbon nanotubes as efficient electrocatalysts for the oxygen evolution reaction

    Get PDF
    Herein, we report a facile route to synthesize isolated single iron atoms on nitrogen-sulfur-codoped carbon matrix via a direct pyrolysis process in which hemoglobin, a by-product of the meat industry, was utilized as a precursor for iron, nitrogen and sulfur while bamboo-shaped carbon nanotubes served as a support owing to their excellent conductivity and numerous defects. The resulting metal-nitrogen complexed carbon showed outstanding catalytic performance for the oxygen evolution reaction (OER) in alkaline solutions. At an overpotential of 380 mV, the optimal sample yielded a current density of 83.6 mA cm−2, which is 2.5 times that of benchmark IrO2 (32.8 mA cm−2), rendering it as one of the best OER catalysts reported so far. It also showed negligible activity decay in alkaline solutions during long-term durability tests. Control experiments and X-ray absorption fine structure analyses revealed that Fe-Nx species in the samples are the active sites for OER. Further density functional theory calculations indicated that the presence of sulfur in the carbon matrix modified the electronic structures of active species, thereby leading to the superior activity of the sample
    corecore