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Learning image similarity plays a critical role in real-world multimedia information retrieval applications,
especially in Content-Based Image Retrieval (CBIR) tasks, in which an accurate retrieval of visually similar
objects largely relies on an effective image similarity function. Crafting a good similarity function is very
challenging because visual contents of images are often represented as feature vectors in high-dimensional
spaces, for example, via bag-of-words (BoW) representations, and traditional rigid similarity functions, for
example, cosine similarity, are often suboptimal for CBIR tasks. In this article, we address this fundamental
problem, that is, learning to optimize image similarity with sparse and high-dimensional representations
from large-scale training data, and propose a novel scheme of Sparse Online Learning of Image Similarity
(SOLIS). In contrast to many existing image-similarity learning algorithms that are designed to work with
low-dimensional data, SOLIS is able to learn image similarity from large-scale image data in sparse and
high-dimensional spaces. Our encouraging results showed that the proposed new technique achieves highly
competitive accuracy as compared to the state-of-the-art approaches but enjoys significant advantages in
computational efficiency, model sparsity, and retrieval scalability, making it more practical for real-world
multimedia retrieval applications.
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1. INTRODUCTION

Recently, there has been an explosive growth of multimedia data on the Internet due
to the popularity of social networking and social media applications [Gao et al. 2013a,
2013b]. For many real-world multimedia applications, a fundamental research task is to
compute image similarity [Mei and Rui 2009], which has been actively studied for many
years in several communities. The key challenges of this research are mainly twofold.
The first is to design effective feature representation; the second is to study effective
and efficient distance/similarity functions over the features. For feature representation,
researchers in multimedia and computer vision have proposed a variety of features for
Content-Based Image Retrieval (CBIR) over the past decade [Rahmani et al. 2008].
Examples include global features, color, texture, and shape [Gevers and Smeulders
2000], and local features, SIF'T feature descriptors [Lowe 2004; Mikolajczyk and Schmid
2005; Quelhas et al. 2007] and SURF feature descriptors [Bay et al. 2006], as well as
their Bag-of-Words (BoW) representations [Fergus et al. 2005; Wang et al. 2006; Bosch
et al. 2007; Wu et al. 2010; Jegou et al. 2010]. For distance/similarity functions, a
variety of schemes have also been proposed in multimedia and computer vision. The
commonly used approaches include Cosine similarity and Euclidean distance, both of
which assume a rigid similarity or distance function in some vector space that is often
not optimal in real applications [Zheng et al. 2015; Pan et al. 2016b; Xia et al. 2016;
Zhili et al. 2016; Zhou et al. 2017].

To overcome the limitations of rigid distance/similarity functions, Distance Metric
Learning (DML) techniques [Yang and Jin 2006] have been actively explored to optimize
distance metrics, and have been found promising results in various applications, such
as image retrieval [Zha et al. 2009; Hoi et al. 2008; Yang et al. 2012; Wu et al. 2013;
Zhang et al. 2014; Pan et al. 2014; Wan et al. 2015; Wu et al. 2016], image and video
annotation [Mei et al. 2008; Wu et al. 2011; Xu et al. 2011], and mobile application [Chen
et al. 2013, 2015; Gao et al. 2016]. Specifically, a typical task of DML is to optimize the
generalized Mahalanobis distance of two instances in some vector space as follows:

Du(xi. x,) = /(% — x,) M(x; — x;). m

where x;, x; € R” and M € R™™ must be positive semi-definite (PSD) in order to satisfy
the metric property, that is, M > 0. Despite being studied extensively, a major drawback
of the existing DML schemes is that imposing the PSD constraint often results in
computationally intensive algorithms. In addition, many existing DML algorithms
usually work in batch-learning mode, which scales poorly for large amounts of training
data.

Chechik et al. [2010] had attempted to overcome these limitations by avoiding the
PSD constraint when learning the similarity functions in an online learning approach.
Specifically, instead of learning the generalized Mahalanobis distance, they proposed
OASIS—a novel scheme that attempts to learn the following parametric bilinear sim-
ilarity function:

Sw(x;, x;) = x; Wx;, (2)
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where W € R™ does not need to satisfy the PSD constraint. Although OASIS is
much more efficient and scalable than the previous DML algorithms for optimizing the
BoW representation with relatively small vocabulary sizes (e.g., 1k—10k), they would
still suffer from the critical challenge of poor computational efficiency when handling
large-scale, very-high-dimensional BoW data with large vocabulary sizes.

To tackle this challenge, in this article, we propose a novel scheme of Sparse Online
Learning of Image Similarity (SOLIS) to effectively exploit the sparsity of visual image
feature representations for learning image similarity efficiently from large-scale sparse
BoW representations with very large vocabulary sizes. Specifically, the proposed SOLIS
scheme attempts to tackle the online image-similarity learning task by exploring the
recent advances of sparse online-learning techniques in machine learning [Langford
et al. 2009; Xiao 2010]. Unlike the existing OASIS approach, which does not guarantee
finding sparse similarity functions, SOLIS is able to learn sparse similarity functions,
which enjoys several salient advantages over OASIS when learning to optimize BoW,
including (i) space efficiency—it significantly reduces storage cost by discarding a large
fraction of noninformative codewords with zero weights; (ii) indexing and retrieval
efficiency—it considerably reduces indexing and retrieval time cost using the resulting
compact codebook; and (iii) learning efficiency—it can also significantly reduce the
computational cost for learning the weights from large-scale training data due to the
proposed efficient and scalable sparse online learning of the image-similarity scheme.

In summary, these are the main contributions of this article:

—We present a novel framework of Sparse Online Learning of Image Similarity
(SOLIS) for learning sparse similarity functions from large-scale sparse high-
dimensional data.

—We propose a family of four different SOLIS algorithms and explore their applications
for optimizing the high-dimensional BoW representation in image retrieval.

—We conduct extensive experiments by comparing the proposed algorithms with the
state-of-the-art methods for optimizing the BoW representation in image retrieval.

We note that a short version of this work has been published in AAAI2014 [Gao et al.
2014]. This new version has been significantly extended and rewritten by including
a substantial amount of new content. The rest of this article is organized as follows.
Section 2 briefly reviews related work. The system framework of our SOLIS scheme is
described in Section 3. Section 4 presents the problem formulation and proposed algo-
rithms with application to image retrieval. Section 5 contains extensive experimental
results and discussions. We present our conclusions in Section 6.

2. RELATED WORK

In this section, we review two major categories of related work in multimedia [Chen
et al. 2015; Li et al. 2015; Wang et al. 2016], computer vision [Pan et al. 2015, 2016a]
and machine learning.

2.1. Distance and Similarity Learning

Our work is closely related to DML [Hoi et al. 2006] or similarity learning [Xia et al.
2014], which has been extensively studied in the literature [Yang and Jin 2006]. A vari-
ety of algorithms have been proposed by following different settings and methodologies
across different communities. In terms of training data formats, most existing works
can be generally grouped into two major categories: (i) learning distance/similarity
functions directly from explicit class labels [Weinberger and Saul 2009] that are com-
mon for generic data classification tasks and (ii) learning distance/similarity functions
from side information [Wu et al. 2009] (either pairwise [Hoi et al. 2008] or triplet con-
straints [Chechik et al. 2010]), which are common for multimedia retrieval applications.



In terms of learning methodology, most existing methods often adopt batch machine-
learning approaches. The major limitation of this learning methodology is that the
model has to be retrained from scratch whenever there is new training data. In recent
years, some emerging studies have attempted to explore online-learning techniques
to tackle the learning tasks [Jain et al. 2009; Chechik et al. 2010] in an efficient and
scalable way. Our work also follows the online-learning methodology [Hoi et al. 2014]
to tackle image-similarity learning tasks.

Although various techniques have been proposed for learning image distance metrics
or similarity functions in the literature, one common issue with the existing approaches
is that they often learn a full matrix from relatively low-dimensional image represen-
tations (e.g., typical DML studies [Yang and Jin 2006]) or sometimes learn a dense
diagonal matrix from high-dimensional BoW representations (e.g., OASIS [Chechik
et al. 2010]), either of which often results in computationally intensive solutions, mak-
ing them hardly scalable for very high-dimensional data. In addition, learning a full
matrix for the distance metric or a dense diagonal matrix for similarity functions also
will lead to high computational cost when deploying the distance/similarity functions
in the final applications. Unlike the existing approaches, our goal is to study a highly
efficient and scalable online learning scheme for learning sparse image similarity func-
tions from large-scale very high-dimensional data.

2.2. Sparse Online Learning

Our work is also related to sparse online learning in machine learning [Langford et al.
2009; Duchi and Singer 2009], which aims to induce sparsity in the model learned by
an online learner. Mathematically, sparse online learning can be formulated as formal
online optimization tasks with convex objective functions and some sparsity-promoting
regularizer [Duchi and Singer 2009]. A variety of techniques have been proposed to
resolve such online optimization tasks efficiently. In terms of different optimization
principles, there are two major groups of sparse online-learning algorithms in the
literature.

The first group is the family of first-order sparse online-learning algorithms, which
follows the general idea of subgradient descent with truncation, also known as the
Truncated Gradient (T'G) for short. For example, FOBOS [Duchi and Singer 2009]
adopts a traditional subgradient descent step followed by an instantaneous minimiza-
tion that keeps close to the update with a sparsity-promoting penalty. By arguing that
the truncation at every iteration is too aggressive, an improved TG method has been
proposed in Langford et al. [2009], which truncates coefficients every step only when
the coefficients exceed a predefined threshold.

The second group of algorithms is based on the idea of Dual Averaging (DA) methods
for sparsity-inducing online optimization [Xiao 2010]. For instance, Xiao [2010] extends
the simple DA scheme by proposing the regularized dual averaging (RDA) algorithm,
which uses a much more aggressive truncation threshold and is able to generate signifi-
cantly sparser solutions. Recently, there have been some emerging studies that attempt
to explore second-order information for improving sparse online-learning tasks, such
as the Adaptive subgradient methods [Duchi et al. 2011], which dynamically exploit
knowledge of the geometry of the data observed in previous iterations to perform more
informative gradient-based online learning.

Despite being studied actively, most existing works have been focusing on learn-
ing classifiers for online classification tasks. For example, Tan et al. [2016] presents
the confidence-weighted learning scheme for learning sparse classifiers on high-
dimensional data in traditional classification settings, while our work is about learning
sparse similarity in retrieval settings. In this work, we apply sparse online-learning
techniques for resolving image relative similarity learning tasks, for which the training
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Fig. 1. The system flow of the proposed SOLIS scheme, including (a) Image Database Construction—
images collected from regular image benchmark databases or web images crawled from Internet; (b) Visual
Vocabulary Generation—extracting SIFT features from images in the databases and then generating visual
vocabularies by fast approximate k-means clustering; (c) Image Similarity Learning—learning image simi-
larity functions by the proposed SOLIS algorithms; (d) Indexing and Retrieval—we apply the learned image
similarity for indexing the image database and retrieving similar images given a query image.

data is given in the form of triplet constraints. In our framework, we have extensively
explored the applications of both first-order and second-order sparse online-learning
algorithms to tackle our image-similarity learning problem.

3. SYSTEM OVERVIEW

We first give an overview of the proposed system by exploring sparse online image-
similarity learning techniques to optimize the BoW representations in CBIR. Figure 1
illustrates the system flow of our scheme, which consists of the following major stages:
(i) image database construction, (ii) visual vocabulary generation, (iii) sparse online
learning of image similarity, and (iv) indexing and retrieval. Here, we briefly describe
the key idea of each stage.

The first stage is to construct an image database for both retrieval and learning
tasks. For example, one can crawl a collection of desired web images from the Internet
as the retrieval database. It is also necessary to have a ground truth set to enable
the evaluation of image-similarity learning algorithms and comparison of different
retrieval schemes.

The second stage is to generate a visual vocabulary, that is, a codebook with a list of
visual words. This is typically obtained by extracting local features (e.g., SIFT [Lowe
2004]) from images and then performing fast approximate k-means clustering [Muja
and Lowe 2009] to generate a set of clusters as “visual words.” Unlike image-recognition
tasks, a large number of clusters is often more preferred in CBIR for achieving high
retrieval accuracy. Based on the visual vocabulary, each image can be represented as a
sparse feature vector in a high-dimensional space.

The third stage is to learn the optimal codebook weights from training data (pairwise
or triplet constraints). In our approach, we propose a novel online machine-learning
scheme to learn sparse weights for the codebook as obtained in the previous stage. This
is the key stage for optimizing the BoW representation, including both discrimination
and compactness.

The last stage is to apply the sparse weight vector for indexing images with the
BoW representations to retrieval tasks. It is important to note that the sparse weight
vector can save a significant amount of indexing and retrieval costs since we can simply
discard the visual words of zero weights, making the BoW representation much more
compact and efficient for large-scale CBIR.



4. SPARSE ONLINE LEARNING OF IMAGE SIMILARITY

In this section, we first give a formal formulation of the proposed SOLIS that aims to
explore machine-learning techniques to optimize the BoW representations for CBIR
tasks. We then explore a family of efficient and scalable sparse online-learning algo-
rithms to resolve the research problem.

4.1. Problem Formulation

We address the fundamental problem of image-similarity learning from side informa-
tion (e.g., training data in the forms of pairwise or triplet image relationship) to CBIR
applications. To formulate the image-similarity learning task, we let S(x;, x;) denote
the similarity function between any two images x;, Xx; € R™ and assume that a collec-
tion of training data instances are given sequentially in the form of triplet instances
{(x;, x;’ ,X;),i = 1,...,n}, where each triplet instance indicates the relationship be-
tween three images, that is, image x; is more similar to image x;* than image x; and n
is the total number of triplets. The goal is to learn a similarity function S(-, -) that can
produce the similarity values always satisfying the triplet constraints as follows:

Sx;,x") > 1+8x;,x;), VX, X/,X; € X, 3)

where 1is a margin constant to ensure that S(x;, x;") is sufficiently larger than S(x;, x;).

In this article, we aim to explore sparse online-learning techniques for optimizing
image-similarity functions in CBIR applications, where images are often represented
as a sparse Bag-of-Words (BoW) feature vector in high-dimensional spaces. More specif-
ically, we consider the problem of image-similarity learning for optimizing a parametric
bilinear similarity function S defined as follows:

Sw(x;, x;) = x; Wx;, 4)

where W € R™™_ Tt is not difficult to see that this similarity function reduces to Cosine
similarity when choosing W as an identity matrix and assuming that instances are of
unit norm.

Given this similarity function and the constraints in Equation (3), we can formulate
the problem of image-similarity learning as a convex optimization task

min » " L((x;, ;7. x;); W) + Ar(W), (5)
w i=1

where (W) is some convex regularization term (e.g., a sparsity-promoting regularizer)
that limits model complexity, » > 0 is a regularization parameter, and the loss function
L is based on the hinge loss, that is,

L(x;, %7, x7); W) = max(0, 1 — Sw(x;, X)) + Sw(x;, X;)). (6)

Minimizing this loss is equivalent to minimizing the amount of violation on the con-
straints defined in Equation (3).

This optimization is a batch-learning formulation with a full matrix W of space
complexity O(m?), which poses a huge challenge when handling large-scale high-
dimensional data. In order to deal with very-high-dimensional image data (e.g., millions
of dimensions), we simplify the problem by considering the similarity function defined
by a diagonal weight matrix: W = diag(w), where w € R”™. We can rewrite the loss
function £ into

L((x;, %7, x7); W) = max(0, 1 — Sw(x;, X;) + Sw(xi, X)), (7)

where Sy(x;, X;) = x; diag(w)x;.



Instead of solving the optimization task using regular batch-learning algorithms, we
propose exploring online-learning techniques to tackle the learning task for several
reasons. First of all, online learning avoids the retraining needed by batch-learning
algorithms when there is new training data. We note that this is particularly critical for
areal-world CBIR application, since training data is often collected from user-relevance
feedback or search query logs, and thus usually arrives in a sequential manner along
with the development and deployment of a CBIR system. In addition, online-learning
algorithms are often simple in nature and usually more efficient and scalable than
batch-learning algorithms for very-large-scale applications. Next, we give the details
of our online-learning formulations.

By following typical settings of online learning [Hoi et al. 2014], we assume that a
triplet instance (x;, X", X; ) is received at every step ¢ = 1,...,n. The goal of SOLIS
is to sequentially update the metric M = diag(w) by solving the following online
optimization task:

Wi < argmin £((x, X, , X; ); W) + Ar(w), (8)

where r(w) is a sparsity-promoting regularizer, for example, the ¢;-regularizer r(w) =
|lw|1 in our approach. In the following, we present a family of efficient and scalable
algorithms to tackle the aforementioned optimization task of sparse online image sim-
ilarity learning for handling very-high-dimensional BoW data.

4.2. SOLIS-TG: SOLIS Algorithm via Truncated Gradient

We first attempt to solve the SOLIS problem by exploring the TG-based tech-
niques [Langford et al. 2009], which extend the online gradient descent with truncation
tricks for achieving sparsity.

Specifically, consider an online optimization with the objective function in Equa-
tion (7) with ¢;-regularization; a simple online gradient descent (OGD) method makes
the following update:

Wi < Wy — nVLy, — nisgn(wy), 9)

where VLy, is a subgradient of £ with respect to w;. n > 0 is a learning rate parameter,
and A > 0is a regularization parameter. This method, however, does not guarantee the
production of sparse weights at every online learning step.

In order to produce sparse weights at every online step, we extend the OGD rule by
applying the TG approach, which performs the following truncation update:

Wil < T1(wWy — nV Ly, nAy), (10)
where A > 0 and 7 is the learning rate, and 71 (v, @) = [T1(v1, @), T1(ve, @), ..., T1 (v, )]
is a truncation function in which each dimension is defined as

Tatujo) = | o0 8 ohion an
By taking the specific form of VLy,, we have that
w1 < Tilw, — nlx © (X1 — x;)], niy), (12)

where © denotes an elementwise product of two vectors. This update tries to promote
sparsity for the OGD solution w; —nV Ly, by performing truncation with threshold n2x;.
Finally, Algorithm 1 summarizes the details of the proposed SOLIS-TG algorithm.

4.3. SOLIS-DA: SOLIS Algorithm via Dual Averaging

Our second solution is to explore Nesterov’s DA method [Nesterov 2009] and its exten-
sions [Xiao 2010] to tackle the problem of sparse online learning of image similarity,



ALGORITHM 1: SOLIS-TG—SOLIS via Truncated Gradient
Input: Training triplets: (x;, %, x;), t=1,...,n.
Output: The final weight matrix: diag(w,1).

1: Initialize w; = 0; o = nA

2: fort=1,...,ndo

3:  Receive a triplet instance (x;, x;", x;),

4:  Suffer loss L((x;, X/, X; ); ;) measured by Equation (7)
5. if L((x;, x}, x;); w;) > O then
6: v=w,—nlx 0 & —x;)
7: for j=1 to m do

8: if v; > 0 then

9: w1, = max(0, v; — a);
10: else

11: W1, = min(0, v; + o);
12: end if

13: end for

14: end if

15: end for

which attempts to exploit all the past subgradients of the loss function and the whole
regularization term instead of using only its subgradient by the truncated gradient
approaches.

Specifically, when receiving a triplet instance (x;, X", x;) at each online step, we
update the weight vector by exploring a regularized dual averaging method with ¢;-
regularization, as follows:

t

.1 14 2
— VLw, A — , 13
Wil < argmin - ;:1( wis W) + Al Wil1 + 2\/E||W|| (13)

where VL, is a subgradient of £ at the ith online step and %lel2 is an auxiliary
strongly convex function. A; is a truncating threshold 1, = A + V—’;, and A > 0, y > 0 and

p > 0 are sparsity-promoting parameters. % is a nonnegative and decreasing input

sequence to ensure that the impact by the auxiliary function decreases with time. In
online implementations, we maintain an average gradient V, at the ¢th step:

- t—1_ 1
Vt = P thl + thﬁwt (14)
t—1_ 1
= — Vo1 + 7% O x5 —x;). (15)
Using this notation, we can derive the closed-form solution of w1 = [wgl, e, W§T>1]
for optimizing Equation (13) as
)
; 0 if [V, | <A
@) ’ t =AM
w' . = _ G e (16)
t+1 { —%”T(Vt(l) - Atsgn(Vt(l))), otherwise

where A; is a truncating threshold 1, = A + %, and p > 0 is the sparsity-promoting

parameter. Finally, Algorithm 2 summarizes the details of the proposed Sparse Online
Learning of Image Similarity via Dual Averaging (SOLIS-DA) algorithm.

4.4. SOLIS-AFB: SOLIS Algorithm via Adaptive FOBOS

The just presented SOLIS algorithm exploits only the first-order information of the
weight vector at each online step. To address this limitation, we propose a second-order



ALGORITHM 2: SOLIS-DA—SOLIS via Dual Averaging

Input:
1: Training triplets: (x,, x;.x;), t =1,..., n
2: Input parameters: y > 0, p > 0

Output: The final weight matrix: diag(w,,,1).
3: Initialize w; =0, Vo = 0
4: fort=1,...,ndo
5:  Receive a triplet instance (x;, x;", x; ),

6:  Suffer loss L((x;, X", X, ); w;) measured by Equation (7)
7. Compute V, = £1V,_; + 1%, 0 (x/ — x;)
8: Compute A, = A + yp//t

9: if L((x,, x/}. x;); w;) > 0 then

10: for j=1 to m do

11: if |V,”’] < 4, then

12: Wifr)l =0;

13: else -6 0

14; wi ==L (V" — nsgn(v,”);
15: end if

16: end for

17:  endif

18: end for

sparse weight-learning scheme by exploring another state-of-the-art sparse online-
learning method, that is, the Adaptive FOBOS method [Duchi et al. 2011], which
dynamically exploits knowledge of the geometry of the data observed in previous iter-
ations to perform more informative gradient-based online learning.

Specifically, when receiving a triplet instance (x;, X;", X; ) at each online step, we up-
date the weight vector by the composite mirror descent method with ¢;-regularization,
as follows:

Wil < argmvinmgt, w) + nA|wll1 + By, (W, w;), amn
where By, (w, w;) = W,(w) — ¥, (w;) — (VW(W;), w — W) is the Bregman divergence asso-

ciated with a strongly convex and differentiable proximal function ¥,(w) = %(w, H,w).
n is the learning rate and A > 0 is the sparsity-promoting parameter.

H, = §I + diag(Gy)'?

t
G =) ggl (18)
=1

where § > 0 is the parameter to ensure the positive-definite property of the adaptive
weighting matrix. Using this notation, we can derive the closed-form solution of w;,; =
(1) (m)

(w1, ..., w/] for optimizing Equation (17) as
0 o _ "o O ) AL }
w . =sgn|w}!) — — w —_— - (19a)
b1 =08 ( " H & > H Y Hyt H;i |,
g =%x0K —-x;) (19b)

Algorithm 3 shows the detailed procedures of the proposed Sparse Online Learning of
Image Similarity via Adaptive FOBOS (SOLIS-AFB) algorithm.



ALGORITHM 3: SOLIS-AFB—SOLIS via Adaptive FOBOS

Input:
1: Training triplets: (x,, x; ", x;), t =1,..., n
2: Input parameters: » > 0,7 > 0,8 >0
Output: The final weight matrix: diag(w,1).
3: Initialize w; =0

5:  Receive a triplet instance (x;, x;", x;);

6 Suffer loss L£((x;, X;", X, ); W;) measured by Equation (7);

7. if L((x. X/, X;); W) > 0 then

8: Compute g; = x; O (X — x;);

9 Compute G; = Y ' _, g.8];

10: Compute H, = §1 + diag(G,)"?;

11: forj:l to m do

o) [ |- ],
13: end for

14: end if

15: end for

4.5. SOLIS-ADA: SOLIS Algorithm via Adaptive RDA
Our fourth solution is to explore the Adaptive Regularized Dual Averaging method
[Duchi et al. 2011], which dynamically exploits knowledge of the geometry of the data
observed in previous iterations to perform more informative gradient-based online
learning.

Specifically, when receiving a triplet instance (x;, X", x;) at each online step, we
update the weight vector by exploring a regularized dual averaging (RDA) method
with ¢;-regularization as follows:

. 1
Wil < argm;nwgt, W) + nillwll1 + —‘Pt(w), (20)
where W;(w) = (w H;w) is the same proximal function as in SOLIS-AFB. g = % Ztr g
is the average subg‘radlent of £ at the online step. 5 is the learning rate and A > 0 is
the sparsity-promoting parameter.
H, = I + diag(G,)'?
t
G = ) g8/ (21)

where § > 0 is the parameter to ensure that positive-definite property of the adaptive
weighting matrix. Using this notation, we can derive the closed-form solution of w;, 1 =

[ng, . ;’j:)l] for optimizing Equation (20) as
wi, = sen(— ) 1&g - . (222)
gt == Xt @ (Xt - Xt ) (22b)

Algorithm 4 shows the detailed procedures of the proposed Sparse Online Learning of
Image Similarity via Adaptive RDA (SOLIS-ADA) algorithm.

5. EXPERIMENTS

In our experiments, we investigate the application of the proposed SOLIS technique for
improving the BoW representation in CBIR tasks. In the following, we first introduce



ALGORITHM 4: SOLIS-ADA—SOLIS via Adaptive RDA

Input:
1: Training triplets: (x,, x;.x;), t =1,..., n
2: Input parameters: » > 0,7 > 0,5 > 0
Output: The final weight matrix: diag(w,,1).
3: Initialize w; =0
4: fort=1,...,ndo
5:  Receive a triplet instance (x;, x;", x;);

6 Suffer loss £((x;, X/, X, ); w;) measured by Equation (7);
7 if £((x;, x}, x;); w;) > 0 then

8: Compute g; = x; O (X" — x;);

9 Compute G, =" _, g.g;

10: Compute H, = §I + diag(G;)'/?;

11: for j=1to m do

12: wih = sgn(—1g”) 7= (18| - 2],

13: end for

14: end if

15: end for

the experimental testbed and setup, followed by presenting the detailed experimental
results and discussions.

5.1. Experimental Testbed and Setup

We use the BoW representation for representing the images in our datasets. Specifi-
cally, we use SIFT descriptors [Lowe 2004] and fast Approximate K-Means (AKM) clus-
tering [Muja and Lowe 2009] to generate codebooks of varying sizes in three different
scales: 10K (10,000), 100K (100,000), and 1M (1-million). We conduct performance eval-
uation on several publicly available image datasets, including Oxford5K" [Philbin et al.
20071, Paris? [Philbin et al. 2008], and 1-million Flickr images MIRFlickr1M? [Huiskes
et al. 2010]. More details about these datasets will be discussed in subsequent sections.

In the following experiments, we first evaluate the retrieval quality of different
methods measured by mean Average Precision (mAP) followed by evaluating the model
sparsity for all cases. Finally, we will also evaluate the computational time costs for
training, indexing, and retrieval by different schemes.

5.2. Comparison Algorithms

In order to examine the efficacy of the proposed SOLIS scheme, we compare the follow-
ing schemes for image retrieval in our experiments:

—TF-IDF: The commonly used TF-IDF scheme for weighing the BoW representa-
tion [Baeza-Yates et al. 1999];

—QPAOQO: A state-of-the-art codebook learning approach [Cai et al. 2010] which formu-
lates it as quadratic programming (QP) and adopts Alternating Optimization (AO)
to solve it;

—OASIS: Online Algorithm for Scalable Image Similarity [Chechik et al. 2010], a
state-of-the-art online learning algorithm for image-similarity learning;

—LEGO: a state-of-the-art online metric-learning algorithm [Jain et al. 2009] for sim-
ilarity search;

Thttp://www.robots.ox.ac.uk/~vgg/data/oxbuildings/index.html.
Zhttp://www.robots.ox.ac.uk/~vgg/data/parisbuildings/index.html.
3http://press.liacs.nl/mirflickr/#sec_download.
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—LMNN: Largest Margin Nearest Neighbor [Weinberger and Saul 2009], a state-of-
the-art DML algorithm in which % nearest neighbors belong to the same class while
instances from different classes are separated by the large margin;

—SOLIS: the four proposed SOLIS algorithms, including SOLIS-TG, SOLIS-DA,
SOLIS-AFB, and SOLIS-ADA, which are denoted as S-TG, S-DA, S-AFB, and S-
ADA, respectively.

For parameter settings, we follow the typical empirical studies of online learning
by choosing the best parameters for each algorithm using a separate validation set of
randomly sampled triplet sequences for each dataset in our experiments.

5.3. Experiments on Regular Benchmark Datasets

Following previous studies, we adopt the well-known “Oxford5K” image dataset for
image-retrieval benchmarks. This dataset contains a total of 5,062 images for 11 Ox-
ford landmarks with manually annotated ground truth. We follow the same experi-
mental settings used in previous studies, in which 5 images per landmark are used
for each query. The mAP is employed as the performance metric for evaluating the
retrieval results. We learn distance/similarity metrics for each landmark with 7 ran-
domly selected positive images and 500 negative images, which generates a total of
21,000 (= 7 x 6 x 500) triplet instances. The remaining 4,555 images are used for
testing/retrieval. We evaluate the compared algorithms on 7 landmarks out of 11 and
exclude another 4 landmarks because they simply have too few training examples to
learn a good codebook by the algorithms. The same setting was also adopted by the
previous codebook learning study in Cai et al. [2010].

5.3.1. Evaluation of Mean Average Precision. Table I shows the evaluation of mAP perfor-
mance by different schemes. We can draw several observations from the results.

First, we observe that most learning schemes are able to outperform the unsuper-
vised TF-IDF scheme for most cases. This shows the efficacy and importance of opti-
mizing the BoW representation in CBIR by applying machine-learning techniques in
exploiting side information/training data.

Second, we found that the existing batch-learning approach QPAO generally achieved
better retrieval performance than the two online algorithms OASIS and LEGO. This
is perhaps not too surprising because QPAO solves a batch optimization that thus
might get better solutions, while all online algorithms (OASIS, LEGO, and our SOLIS
algorithms) only learn from a single pass of the triplet instances.

Further, by examining the four proposed SOLIS algorithms (S-TG, S-DA, S-AFB, and
S-ADA), we found that their overall retrieval performance is generally much better than
OASIS, LEGO, and LMNN, which indicates that the proposed sparsity-inducing image-
similarity learning algorithm is potentially more effective than the existing algorithms
for online similarity learning without exploiting sparsity. Moreover, by comparing with
the batch QPAO algorithm, we found that our SOLIS algorithms are fairly comparable
for most cases and sometimes even better than QPAO (e.g., on the scenario with the
10,000-sized codebook). This encouraging result validates the efficacy of the proposed
sparsity-inducing online-learning scheme for improving the BoW performance.

Finally, the four proposed SOLIS algorithms achieve very comparable retrieval per-
formance in which the two second-order SOLIS algorithms (S-AFB and S-ADA) tend
to slightly outperform the two first-order SOLIS algorithms (S-TG and S-DA).

5.3.2. Evaluation of Sparsity of the Learned Weights. The sparsity of BoW plays a critical
role for large-scale CBIR systems, especially for image indexing and retrieval stages.
A sparse BoW model not only can speed up the indexing and retrieval processes but
also can save a significant amount of storage cost. Later, we measure the sparsity of



Table |. Comparison of Mean Average Precision (%) on Oxford5K Dataset with Codebooks of Varying Sizes
Codebook Size Category TF-IDF QPAO OASIS LEGO LMNN | S-TG S-DA S-AFB S-ADA

all souls 40.60 57.42 5272 26.07 40.78 |56.68 45.50 63.05 63.01

ashmolean 30.66 30.02 33.03 2749 30.63 |30.79 35.90 33.05 33.06

bodleian 30.11 68.28 65.13 39.24 33.55 |64.66 74.53 62.72 62.57

10,000 christ church 46.35 45.79 43.41 43.66 46.51 |53.43 52.42 56.25 56.25
hertford 31.16 5147 42.18 28.66 31.20 |44.30 3593 47.37 47.28

magdalen 5.92 886 934 3.95 597 |12.12 1755 1559 1541

radcliffe camera | 52.22 8244 7512 6843 53.30 |80.68 74.71 78.03 78.07

mAP 33.86 49.18 4585 33.93 34.56 |48.95 48.08 50.87 50.81

all souls 58.17 9392 7522 5825 5829 |91.58 88.70 91.33 91.09

ashmolean 44.96 42.78 47.68 43.96 44.96 |40.15 41.12 44.35 44.11

bodleian 49.06 86.02 7136 60.02 52.66 |83.07 83.42 85.58 85.67

100,000 christ church 52.08 70.74 50.97 52.06 52.10 |59.73 59.04 66.10 65.95
hertford 53.61 63.93 57.75 5281 53.561 [63.41 60.44 76.60 76.61

magdalen 11.29 1099 1296 691 11.29 | 9.63 1842 19.50 19.95
radcliffe camera | 70.51 82.19 76.92 70.34 70.51 |76.69 76.43 85.16 85.19

mAP 48.51 64.37 56.13 49.19 49.05 |60.61 61.08 66.95 66.94
all souls 53.96 62.99 55.03 53.96 * 62.71 63.57 63.98 64.03
ashmolean 53.86 48.77 53.45 53.86 * 48.63 51.53 53.14 53.40
bodleian 66.88 90.21 70.57 66.88 * 84.17 83.47 9148 91.80
1,000,000 christ church 56.67 65.36 57.34 56.66 * 61.10 61.10 62.24 62.22
hertford 72.00 68.66 75.36 72.00 * 79.24 82.78 83.83 83.83
magdalen 18.98 15.63 19.24 19.01 * 8.79 9.77 9.58 9.58
radcliffe camera | 64.43 62.94 65.04 64.42 * 58.03 61.85 62.55 62.38
*

mAP 55.25 59.23 56.58 55.26 57.53 59.15 60.97 61.04
Note: In the results, “*” denotes the case in which a method cannot be completed within 5 days.

the learned weights by different algorithms, that is, the number of zero values in the
learned weight vectors.

Table IT shows the sparsity evaluation of the learned weights by different learning
approaches with 10K-sized, 100K-sized, and 1M-sized codebooks. We can draw several
observations from the results that follow.

First, we found that OASIS, LEGO and LMNN fail to produce sparse weights for most
cases, especially for large-sized codebooks. QPAO is able to produce reasonably sparse
weights on the 10,000-sized codebook but also fails when the codebook size is large.
By contrast, the four proposed SOLIS algorithms are able to produce sparse weights
for all cases. In particular, it seems that the larger the codebook size, the higher the
sparsity achieved by the proposed algorithms. Finally, by comparing the four proposed
SOLIS algorithms themselves, the second-order SOLIS algorithms (S-AFB and S-ADA)
generally achieves better sparsity than the first-order algorithms (S-TG and S-DA) for
most cases primarily because it exploits all past subgradients and thus achieves better
sparsity.

5.3.3. Evaluation of Sparsity versus mAP. Figure 2 shows the sparsity versus mAP on the
category of hertford in the Oxford5K dataset by different approaches with codebooks
of varying sizes. From the empirical results, we found that both LEGO and LMNN
fail to achieve higher mAP and produce sparse weights for most cases, especially for
large-sized codebooks. Similarly, QPAO is able to produce reasonably sparse weights
on the 10K-sized codebook with better performance but also fails when the codebook
sizes are too large. By contrast, the four proposed SOLIS algorithms can keep very good
mAP performances even when the sparsity is very high. Moreover, we observe that the



Table Il. Comparison of Sparsity Rate (%) of Learned Weights by Different Approaches on Oxford5K
Dataset with Codebooks of Varying Sizes

Codebook Size Category QPAO OASIS LEGO LMNN | S-TG S-DA S-AFB  S-ADA
all souls 44.99 0.00 0.00 0.00 |22.36 64.54 86.73 88.89
ashmolean 40.16 0.00 0.00 0.00 |25.10 74.49 91.59 93.24
bodleian 35.80 0.00 0.00 0.00 | 77.43 93.43 96.01 96.35
10,000 christ church 31.91 0.00 0.00 0.00 | 32.08 76.92 93.36 94.62
hertford 43.19 0.00 0.00 0.00 |22.87 61.82 85.99 88.11
magdalen 47.59 0.00 0.00 0.00 19.62 52.61 85.83 88.72
radcliffe camera | 43.37 0.00 0.00 0.00 | 40.48 75.53 89.64 91.09
all souls 0.02 0.00 0.00 0.00 |90.64 97.82 98.50 98.69
ashmolean 0.02 0.00 0.00 0.00 |86.37 98.11 98.83 98.99
bodleian 0.02 0.00 0.00 0.00 | 9525 98.82 99.45 99.51
100,000 christ church 0.01 0.00 0.00 0.00 |91.42 98.87 99.17 99.26
hertford 0.00 0.00 0.00 0.00 |92.99 97.56 98.27 98.47
magdalen 0.04 0.00 0.00 0.00 | 82.26 97.04 98.22 98.45
radcliffe camera | 0.01 0.00 0.00 0.00 93.47 97.18 98.16 98.41
all souls 0.00 0.00 0.00 * 99.51 99.88 99.93 99.93
ashmolean 0.00 0.00 0.00 * 99.30 99.96  99.97 99.97
bodleian 0.00 0.00 0.00 * 99.65 99.85 99.90 99.91
1,000,000 christ church 0.00 0.00 0.00 * 99.67 99.97 99.97 99.97
hertford 0.00 0.00 0.00 * 99.77 99.90  99.90 99.90
magdalen 0.00 0.00 0.00 * 99.06 99.96  99.96 99.96
radcliffe camera | 0.00 0.00 0.00 * 99.51 99.82 99.84 99.88

Note: In the results, “*” denotes cases in which a method cannot be completed within 5 days.

larger the codebook size, the higher the sparsity achieved by the proposed algorithms
without slashing mAP performance. Finally, by comparing the four SOLIS algorithms,
the second-order algorithms (S-AFB and S-ADA) generally outperform the first-order
algorithms (S-TG and S-DA) for varied-sparsity cases.

5.3.4. Evaluation of Computational Cost. Finally, we evaluate the computational costs of
different schemes.

Training Time Cost. Table III shows the evaluation results of training time costs
by different schemes on the Oxford5K dataset with three codebooks of varying sizes.

We can draw some observations from the results. First, we can see that QPAO and
LMNN are the least efficient algorithms. Although QPAO has solved the QP problem by
an efficient alternative optimization scheme, it remains inefficient when handling very-
high-dimensional data (e.g., 1-million scale). Second, OASIS and LEGO are far more
efficient than QPAO and LMNN on relatively lower-dimensional space since OASIS and
LEGO are online algorithms with time complexity linear with respect to the sample
size and dimensionality. However, when handling very-high-dimensional data (e.g., 1-
million-sized codebook), OASIS and LEGO become inefficient as the dimensionality
plays a dominating factor.

By contrast, the proposed SOLIS algorithms are far more efficient and scalable
than all the existing algorithms. Finally, unlike the other algorithms, it is interesting
to observe that increasing the dimensionality does not increase the time cost of the
proposed algorithms. This seems a bit counterintuitive, but is not difficult to explain.
This is because our algorithms always learn sparse weights in the online learning
process, and thus the time complexity of our algorithm depends on the number of
non-zero elements in the training data instead of the dimensionality. This encouraging
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Fig. 2. Sparsity versus mAP on category hertford of Oxford5K dataset by different approaches with code-
books of varying sizes.

result again validates the efficiency and advantage of the proposed SOLIS technique
for large-scale applications.

Indexing Time Cost. To further examine how the sparse BoW model can bene-
fit index construction in the visual similarity search task of CBIR, we evaluate the
computational costs of building an index using inverted index techniques [Sivic and
Zisserman 2003] for image-retrieval tasks. Figure 3 shows the experimental results of
average time cost for indexing the images on the category of hertford in the Oxford5K
dataset by different schemes with codebooks of varying sizes. From the results, we can
see that SOLIS can significantly reduce the indexing time cost by the sparsity-inducing
learning approach.

Retrieval Time Cost. To examine if the sparse BoW model can further benefit the
subsequent image-similarity search task, we evaluate the computational cost of mea-
suring similarity values in the image-retrieval tasks. Figure 4 shows the experimental
results of retrieval time cost over 5 queries on the hertford category in the Oxford5K
dataset by different schemes with codebooks of varying sizes.

As observed from the experimental results, by comparing the BoW model with the
TF-IDF, QPAO, OASIS, LEGO, and LMNN methods, our proposed SOLIS algorithms
achieve the lowest computational cost for computing similarity in the retrieval phase.



Table IlI. Evaluation of Training Time Cost (Seconds) by Different Schemes on Oxford5K
Dataset with Varied-sized Codebooks
Codebook Size Category QPAO OASIS LEGO LMNN |S-TG S-DA S-AFB S-ADA
all souls 2.98 x10°  17.91 440 584x10°| 8.83 7.85 856 8.75
ashmolean |251x10® 17.34 436 580x10°| 6.61 646 6.87 6.03
bodleian 294 x 10°  14.64 3856 5.76x10°| 851 8.92 10.22 9.50

10,000 christ church |1.89x10° 13.77 431 587x10°| 3.71 356 4.72 4.57
hertford 2.74 x 10°  18.27 4.42 597x10°| 6.95 5.58 8.05 7.13

magdalen 249 x 10°  17.75 4.33 5.84x10%| 6.23 5.69 7.23 7.78

radcliffe camera | 2.93 x 10°  16.82 4.36 5.84x10°| 7.09 7.69 9.56 8.73

all souls 3.03 x 103 74.01 26.87 6.82x10*| 2.38 1.76 2.22 2.17
ashmolean 2.63 x 10> 73.03 26.56 6.05x10*| 1.64 1.14 1.53 1.46
bodleian 3.89 x10°  68.48 27.00 5.65x10*| 3.57 292 3.61 1.76
100,000 christ church |1.95x10® 69.08 25.97 597x10*| 0.99 092 0.93 1.06
hertford 2.87 x10°  73.78 26.34 691x10*| 2.10 154 1.94 1.76
magdalen 3.05x10°  74.59 26.67 598x10*| 191 126 1.76 1.75
radcliffe camera | 2.97 x 103 75.45 26.50 6.04x10*| 2.68 1.81 2.61 2.26

all souls 2.38 x 10* 1.26 x 10® 5.56 x 102 * 1.34 1.40 1.47 1.45

ashmolean 2.44 x 10* 1.25 x 103 5.63 x 102 * 1.14 1.01 1.03 1.02

bodleian 1.94 x 10* 1.24 x 10° 5.80 x 102 * 2.24  2.02 2.26 2.16

1,000,000 christ church |2.17 x 10* 1.25 x 10° 5.71 x 102 o 0.99 094 1.02 098
hertford 2.19 x 10* 1.26 x 10% 5.72 x 10% * 1.65 1.72 1.69 1.68

magdalen 2.28 x 10* 1.26 x 10° 5.74 x 10% * 1.05 1.09 1.06 1.09

radcliffe camera | 2.22 x 10 1.26 x 10° 5.62 x 102 * 1.65 1.72 1.83 1.79

Note: In the results, “*” denotes cases in which a method cannot be completed within 5 days.
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Fig. 3. Comparison of the indexing time cost (seconds) on the category hertford of the Oxford5K dataset by
different schemes with codebooks of varying sizes.

This again validates that the proposed SOLIS scheme can significantly improve the
computational efficiency and scalability of image-retrieval tasks.

5.4. Experiments on the Large-Scale Dataset

To further examine the learning efficiency and scalability of the proposed technique,
we construct a large-scale image dataset called “Paris+MIRFlickr1M” from two public
image datasets Paris [Philbin et al. 2008] and MIRFlickr1M [Huiskes et al. 2010]. The
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Fig. 4. Comparison of the retrieval time (seconds) on the category hertford of the Oxford5K dataset by
different schemes with codebooks of varying sizes.

Table IV. Comparison of Mean Average Precision (%) on Paris+MIRFlickr1M
Dataset with Codebooks of Varying Sizes

Codebook Size | TF-IDF  OASIS LEGO |S-TG S-DA S-AFB S-ADA
10K 8.72 11.98 9.24 |10.58 11.27 11.35 12.06
100K 26.94 31.33 27.23 128.08 3195 32.07 32.06

1M 26.52 26.71 26.56 |20.57 26.04 26.87 27.17

Paris+MIRFlickr1M dataset consists of images from the Paris dataset as ground truth
and 1-million web images from MIRFlickr1M as distractors, which were downloaded
from Flickr [Huiskes et al. 2010]. To generate the triplet instances for our learning
task, we repeatedly sample two different images from the same class and another
image from a different class randomly according to their ground-truth class labels.
Specifically, we generate about 1-million triplet instances as training samples from the
Paris+MIRFlickr1M dataset with 10K, 100K, and 1M-sized codebooks, respectively.

We first evaluate the retrieval quality of different schemes using the mAP and then
evaluate the model sparsity as well as computational efficiency. Finally, we evaluate the
time cost for training, indexing, and retrieval by different algorithms with codebooks
of varying sizes.

5.4.1. Evaluation of Mean Average Precision. Following a similar protocol, we evaluate the
retrieval accuracy of different schemes on the large-scale dataset. Since QPAO and
LMNN are very time-consuming and nonscalable for large-scale datasets, we failed to
run them successfully on this large dataset. As a result, we can only compare the four
proposed SOLIS algorithms with the TF-IDF, OASIS, and LEGO algorithms. Table IV
shows the mAP evaluation results on the large-scale Paris+MIRFlickr1M dataset.

From the results, we observe that the retrieval performance of the BoW model using
TF-IDF decreases considerably on this large-scale image dataset in comparison to the
previous experiments, mainly due to the added noisy distracting images. By contrast,
the proposed SOLIS schemes still maintain rather high retrieval accuracy. This en-
couraging result shows that the proposed SOLIS schemes are fairly robust to noisy
background images and are able to significantly improve the retrieval accuracy of Bow
representations for large-scale complex image-retrieval tasks, in which noise could be
quite common.



Table V. Comparison of Model Sparsity (%) on Paris+MIRFlickr1M
Dataset with Codebooks of Varying Sizes

Codebook Size | OASIS LEGO |S-TG S-DA S-AFB S-ADA
10K 0.00 0.00 712 2295  91.57 91.97
100K 0.00 0.00 |84.11 86.90 99.08 99.13
1M 0.00 0.00 ]98.62 99.07 99.90 99.08

Table VI. Comparison of Training Time (Seconds) on Paris+MIRFlickr1M
Dataset with Codebooks of Varying Sizes

Codebook Size OASIS LEGO S-TG S-DA S-AFB S-ADA
10K 1.42 x 102 551 x 102 [85.76 84.15  82.76 81.05
100K 6.94 x 102 197 x 10° |75.49 72.96  71.49 70.86
1M 1.24 x 10* 1.48 x 10* | 70.55 68.82  67.55 65.98

5.4.2. Evaluation of Sparsity of the Learned Weights. Similar to the previous experiments,
we also conduct experiments to evaluate the sparsity of the BoW models learned by
different learning algorithms, which is particularly important for large-scale image-
retrieval tasks. Table V shows the experimental results of measuring the sparsity of the
BoW weights learned by different algorithms. Similar to the previous results, OASIS
and LEGO failed to produce sparse BoW weights, while the four SOLIS algorithms are
able to produce the codebook weights with much higher sparsity for all cases, which
is critical to speeding up the retrieval process and saving the huge storage cost for
large-scale CBIR applications.

5.4.3. Evaluation of Computational Cost. Our last experiment evaluates computational
costs of training, indexing, and retrieval by different algorithms with codebooks of
varying sizes.

Training Time Cost. Similar to the previous experiments, Table VI shows the
comparisons of training time costs by OASIS, LEGO, S-TG, S-DA, S-AFB, and S-
ADA on codebooks of varying sizes. From the results, we can see that the proposed
SOLIS scheme can handle very-high-dimensional data (e.g., 1M-scale) much more effi-
ciently and scalably than the other approaches. This is because our optimization scheme
learns sparse codebook weights through the highly efficient and scalable sparse online-
learning technique. This result again validates the significant advantage in learning
efficiency for the proposed learning scheme for large-scale applications.

Indexing Time Cost. In order to examine how the sparse BoW model can benefit
the indexing task, Figure 5 evaluates the indexing time cost on the Paris+MIRFlickr 1M
dataset with codebooks of varying sizes. Similar observations show that the proposed
SOLIS scheme significantly improves the indexing time cost of BoW in CBIR.

Retrieval Time Cost. Finally, to evaluate how the sparse model improves image-
searching efficiency, we measure the retrieval time costs for querying the large-scale
image dataset Paris+MIRFlickr1M. Figure 6 shows the total retrieval time cost using
the indexes with codebooks of varying sizes learned by different schemes. The proposed
SOLIS algorithms are an order of magnitude faster than the existing algorithms,
particularly for large vocabulary sizes, due to the sparsity-inducing advantage. The
encouraging results again validate that the proposed SOLIS scheme makes the BoW
scheme more practical for large-scale CBIR applications.

5.4.4. Summary and Recommendation. Our previous experiments have examined dif-
ferent aspects of the four proposed SOLIS algorithms. In this section, we give the
summary of our empirical observations and our overall recommendation. In particular,
our empirical results show that (i) in terms of accuracy, the two second-order sparse
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of varying sizes learned by different schemes.

online-learning algorithms generally outperform the two first-order learning algo-
rithms in most cases, and there is no significant difference between the two second-
order learning algorithms; (ii) in terms of the sparsity of the weights obtained by
different algorithms, the two second-order algorithms also outperform the two first-
order algorithms in most cases, SOLIS-TG is often the worst, and SOLIS-ADA is the
best in most cases; and (iii) finally, in terms of computational cost, we have similar
observations in that the two second-order algorithms are slightly more efficient to
train and generally faster for retrieval due to the gains of better sparsity. In summary,
among the four proposed algorithms, SOLIS-ADA would be the recommended best
choice according to our empirical observations.



6. CONCLUSIONS

This article presented SOLIS, the novel scheme Sparse Online Learning of Image
Similarity, which aims to optimize Bag-of-Words (BoW) representations by learning
from large-scale image data with very-high-dimensional BoW representations. SOLIS
explored the recent advances of sparse online learning for tackling the challenging
image-similarity learning task, and presented four specific algorithms based on two
types of optimization techniques: (i) first-order sparse online learning, that is, TG-based
and DA-based learning algorithms; and (ii) second-order sparse online learning, that is,
adaptive FOBOS-based and adaptive DA-based learning algorithms. We investigated
the application of SOLIS for optimizing the sparse and high-dimensional BoW repre-
sentations in large-scale CBIR tasks. Our extensive experimental results show that
the first-order SOLIS algorithms (SOLIS-TG and SOLIS-DA) and second-order SOLIS
algorithms (SOLIS-AFB and SOLIS-ADA) can achieve better or at least comparable
retrieval performance than the state-of-the-art approaches but significantly improve
both model sparsity and computational cost in training, indexing, and retrieval stages.
From the encouraging empirical results, we can conclude that the proposed SOLIS
scheme is more effective and promising than the state-of-the-art approaches for opti-
mizing the BoW representations in large-scale CBIR tasks. Among all four variants of
the proposed SOLIS algorithms, the SOLIS-ADA using the Adaptive Dual Averaging
approach is the overall best recommended choice according to our empirical observa-
tions. Finally, we note that the proposed SOLIS technique is not restricted to optimizing
BoW representations. In our future work, we plan to explore other types of sparse fea-
ture representations using more advanced feature representation learning techniques
and apply our technique for building real-world large-scale CBIR systems.
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