1,318 research outputs found
Photosynthesis of Populus euphratica in relation to groundwater depths and high temperature in arid environment, northwest China
The photosynthetic characterization of Populus euphratica and their response to increasing groundwater depth and temperature were analyzed based on net photosynthetic rate (P (N)), stomatal conductance (g (s)), intercellular CO2 concentration (C (i)), transpiration rate (E), water use efficiency (WUE) and stomatal limitation (L-s) measured by a portable gas-exchange system (LI-6400) in the lower reaches of the Tarim River. Light-response curves were constructed to obtain light-compensation and light-saturation points (LCP and LSP), maximum photosynthetic rates (P (max)), quantum yields (AQY), and dark respiration rates (R (D)). The growth condition of P. euphratica, soil moisture, and groundwater depth in the plots were analyzed by field investigation. The results showed that the growth condition and photosynthetic characterization of P. euphratica were closely related to groundwater depth. The rational groundwater depth for the normal growth and photosynthesis was 3-5 m, the stress groundwater depth for mild drought was more than 5 m, for moderate drought was more than 6 m, for severe drought was more than 7 m. However, P. euphratica could keep normal growth through a strong drought resistance depended on the stomatal limitation and osmotic adjustment when it faced mild or moderate drought stress, respectively, at a normal temperature (25A degrees C). High temperature (40A degrees C) significantly reduced P (N) and drought stress exacerbated the damage of high temperature to the photosynthesis. Moreover, P. euphratica would prioritize the resistance of high temperature when it encountered the interaction between heat shock and water deficit through the stomata open unequally to improve the transpiration of leaves to dissipate overheating at the cost of low WUE, and then resist water stress through the osmotic adjustment or the stomatal limitation
Delocalized single-photon Dicke states and the Leggett- Garg inequality in solid state systems
We show how to realize a single-photon Dicke state in a large one-dimensional
array of two- level systems, and discuss how to test its quantum properties.
Realization of single-photon Dicke states relies on the cooperative nature of
the interaction between a field reservoir and an array of two-level-emitters.
The resulting dynamics of the delocalized state can display Rabi-like
oscillations when the number of two-level emitters exceeds several hundred. In
this case the large array of emitters is essentially behaving like a
mirror-less cavity. We outline how this might be realized using a
multiple-quantum-well structure and discuss how the quantum nature of these
oscillations could be tested with the Leggett-Garg inequality and its
extensions.Comment: 29 pages, 5 figures, journal pape
Turbulence and galactic structure
Interstellar turbulence is driven over a wide range of scales by processes
including spiral arm instabilities and supernovae, and it affects the rate and
morphology of star formation, energy dissipation, and angular momentum transfer
in galaxy disks. Star formation is initiated on large scales by gravitational
instabilities which control the overall rate through the long dynamical time
corresponding to the average ISM density. Stars form at much higher densities
than average, however, and at much faster rates locally, so the slow average
rate arises because the fraction of the gas mass that forms stars at any one
time is low, ~10^{-4}. This low fraction is determined by turbulence
compression, and is apparently independent of specific cloud formation
processes which all operate at lower densities. Turbulence compression also
accounts for the formation of most stars in clusters, along with the cluster
mass spectrum, and it gives a hierarchical distribution to the positions of
these clusters and to star-forming regions in general. Turbulent motions appear
to be very fast in irregular galaxies at high redshift, possibly having speeds
equal to several tenths of the rotation speed in view of the morphology of
chain galaxies and their face-on counterparts. The origin of this turbulence is
not evident, but some of it could come from accretion onto the disk. Such high
turbulence could help drive an early epoch of gas inflow through viscous
torques in galaxies where spiral arms and bars are weak. Such evolution may
lead to bulge or bar formation, or to bar re-formation if a previous bar
dissolved. We show evidence that the bar fraction is about constant with
redshift out to z~1, and model the formation and destruction rates of bars
required to achieve this constancy.Comment: in: Penetrating Bars through Masks of Cosmic Dust: The Hubble Tuning
Fork strikes a New Note, Eds., K. Freeman, D. Block, I. Puerari, R. Groess,
Dordrecht: Kluwer, in press (presented at a conference in South Africa, June
7-12, 2004). 19 pgs, 5 figure
China’s Weibo: is faster different?
The popularization of microblogging in China represents a new challenge to the state’s regime of information control. The speed with which information is diffused in the microblogosphere has helped netizens to publicize and express their discontent with the negative consequences of economic growth, income inequalities and official corruption. In some cases, netizen led initiatives have facilitated the mobilization of online public opinion and forced the central government to intervene to redress acts of lower level malfeasance. However, despite the growing corpus of such cases, the government has quickly adapted to the changing internet ecology and is using the same tools to help it maintain control of society by enhancing its claims to legitimacy, circumscribing dissent, identifying malfeasance in its agents and using online public opinion to adapt policy and direct propaganda efforts. This essay reflects on microblogging in the context of the Chinese internet, and argues that successes in breaking scandals and mobilizing opinion against recalcitrant officials should not mask the reality that the government is utilizing the microblogosphere to its own advantage
A facile chemical conversion synthesis of Sb2S3 nanotubes and the visible light-driven photocatalytic activities
We report a simple chemical conversion and cation exchange technique to realize the synthesis of Sb2S3 nanotubes at a low temperature of 90°C. The successful chemical conversion from ZnS nanotubes to Sb2S3 ones benefits from the large difference in solubility between ZnS and Sb2S3. The as-grown Sb2S3 nanotubes have been transformed from a weak crystallization to a polycrystalline structure via successive annealing. In addition to the detailed structural, morphological, and optical investigation of the yielded Sb2S3 nanotubes before and after annealing, we have shown high photocatalytic activities of Sb2S3 nanotubes for methyl orange degradation under visible light irradiation. This approach offers an effective control of the composition and structure of Sb2S3 nanomaterials, facilitates the production at a relatively low reaction temperature without the need of organics, templates, or crystal seeds, and can be extended to the synthesis of hollow structures with various compositions and shapes for unique properties
Validation and refinement of two interpretable models for coronavirus disease 2019 prognosis prediction
Objective: To validate two proposed coronavirus disease 2019 (COVID-19) prognosis models, analyze the characteristics of different models, consider the performance of models in predicting different outcomes, and provide new insights into the development and use of artificial intelligence (AI) predictive models in clinical decision-making for COVID-19 and other diseases. Materials and Methods: We compared two proposed prediction models for COVID-19 prognosis that use a decision tree and logistic regression modeling. We evaluated the effectiveness of different model-building strategies using laboratory tests and/or clinical record data, their sensitivity and robustness to the timings of records used and the presence of missing data, and their predictive performance and capabilities in single-site and multicenter settings. Results: The predictive accuracies of the two models after retraining were improved to 93.2% and 93.9%, compared with that of the models directly used, with accuracies of 84.3% and 87.9%, indicating that the prediction models could not be used directly and require retraining based on actual data. In addition, based on the prediction model, new features obtained by model comparison and literature evidence were transferred to integrate the new models with better performance. Conclusions: Comparing the characteristics and differences of datasets used in model training, effective model verification, and a fusion of models is necessary in improving the performance of AI models
Selective Synthesis of Fe2O3 and Fe3O4 Nanowires Via a Single Precursor: A General Method for Metal Oxide Nanowires
Hematite (α-Fe2O3) and magnetite (Fe3O4) nanowires with the diameter of about 100 nm and the length of tens of micrometers have been selectively synthesized by a microemulsion-based method in combination of the calcinations under different atmosphere. The effects of the precursors, annealing temperature, and atmosphere on the morphology and the structure of the products have been investigated. Moreover, Co3O4 nanowires have been fabricated to confirm the versatility of the method for metal oxide nanowires
Structural recombination of polymethylsilicone induced by laser plasma
A special synthetic reaction has been developed, in which vapor of the reactant interacts with the high temperature plasma generated by laser ablating a graphite target. By selecting chained methylsilicone as reactant, a series of methylsilsesquioxanes products with various structural configurations have been obtained. Among them, two products, which were separated by sublimation in high vacuum and recrystalization, were characterized by X - ray crystal diffraction as (CH3SiO1.5)(n)(n = 8, 10). Both of them are found to have three - dimensional cage structure. In addition, other products with double ring structure were detected by GC - MS analysis. The results demonstrate the potential application of the synthetic reaction. In the reaction described in this article, resulting from the collision and energy - transfer of the laser plasma, chain structure of the reactant dissociated and recombined to give the cage and ring structure of the products
Nanoparticulate TiO2-promoted PtRu/C catalyst for methanol oxidation: TiO2 nanoparticles promoted PtRu/C catalyst for MOR
To improve the electrocatalytic properties of PtRu/C in methanol electrooxidation, nanoparticulate TiO2-promoted PtRu/C catalysts were prepared by directly mixing TiO2 nanoparticles with PtRu/C. Using cyclic voltammetry, it was found that the addition of 10 wt% TiO2 nanoparticles can effectively improve the electrocatalytic activity and stability of the catalyst during methanol electro-oxidation. The value of the apparent activation energy (Ea) for TiO2-PtRu/C was lower than that for pure PtRu/C at a potential range from 0.45 to 0.60 V. A synergistic effect between PtRu and TiO2 nanoparticles is likely to facilitate the removal of CO-like intermediates from the surface of PtRu catalyst and reduce the poisoning of the PtRu catalysts during methanol electrooxidation. Therefore, we conclude that the direct introduction of TiO2 nanoparticles into PtRu/ C catalysts offers an improved facile method to enhance the electrocatalytic performance of PtRu/C catalyst in methanol electrooxidation.Web of Scienc
- …