127 research outputs found

    Quick Identification of ABC Trilayer Graphene at Nanoscale Resolution via a Near-field Optical Route

    Full text link
    ABC-stacked trilayer graphene has exhibited a variety of correlated phenomena owing to its relatively flat bands and gate-tunable bandgap. However, convenient methods are still lacking for identifying ABC graphene with nanometer-scale resolution. Here we demonstrate that the scanning near-field optical microscope (SNOM) working in ambient conditions can provide quick recognition of ABC trilayer graphene with no ambiguity and excellent resolution (~20 nm). The recognition is based on the difference in their near-field infrared (IR) responses between the ABA and ABC trilayers. We show that in most frequencies, the response of the ABC trilayer is weaker than the ABA trilayer. However, near the graphene phonon frequency (~1585 cm-1), ABC's response increases dramatically when gated and exhibits a narrow and sharp Fano-shape resonant line, whereas the ABA trilayer is largely featherless. Consequently, the IR contrast between ABC and ABA becomes reversed and can even be striking (ABC/ABA~3) near the graphene phonon frequency. The observed near-field IR features can serve as a golden rule to quickly distinguish ABA and ABC trilayers with no ambiguity, which could largely advance the exploration of correlation physics in ABC-stacked trilayer graphene

    High-density genetic linkage mapping reveals low stability of QTLs across environments for economic traits in Eucalyptus

    Get PDF
    IntroductionEucalyptus urophylla, E. tereticornis and their hybrids are the most important commercial forest tree species in South China where they are grown for pulpwood and solid wood production. Construction of a fine-scale genetic linkage map and detecting quantitative trait loci (QTL) for economically important traits linked to these end-uses will facilitate identification of the main candidate genes and elucidate the regulatory mechanisms.MethodA high-density consensus map (a total of 2754 SNPs with 1359.18 cM) was constructed using genotyping by sequencing (GBS) on clonal progenies of E. urophylla × tereticornis hybrids. QTL mapping of growth and wood property traits were conducted in three common garden experiments, resulting in a total of 108 QTLs. A total of 1052 candidate genes were screened by the efficient combination of QTL mapping and transcriptome analysis.ResultsOnly ten QTLs were found to be stable across two environments, and only one (qSG10Stable mapped on chromosome 10, and associated with lignin syringyl-to-guaiacyl ratio) was stable across all three environments. Compared to other QTLs, qSG10Stable explained a very high level of phenotypic variation (18.4–23.6%), perhaps suggesting that QTLs with strong effects may be more stably inherited across multiple environments. Screened candidate genes were associated with some transcription factor families, such as TALE, which play an important role in the secondary growth of plant cell walls and the regulation of wood formation.DiscussionWhile QTLs such as qSG10Stable, found to be stable across three sites, appear to be comparatively uncommon, their identification is likely to be a key to practical QTL-based breeding. Further research involving clonally-replicated populations, deployed across multiple target planting sites, will be required to further elucidate QTL-by-environment interactions

    A lvq-based neural network anti-spam email approach

    No full text
    Abstract: Along with wide application of e-mail nowadays, many spare e-mails flood into people's email inboxes and bring catastrophe to their study and work. This paper presents a novel anti-spare e-mail filter based-LVQ network in terms of spare e-mails which are mainly made up of several kinds commercial or political spare emails at present. Our experiment has proved that the filter based on LVQ is superior to Bayes-based and BP-based approaches in total performances apparently
    • …
    corecore