3,468 research outputs found
Gravitating tensor monopole in a Lorentz-violating field theory
We present a solution of the coupled Einstein and rank-two antisymmetric
tensor field equations where Lorentz symmetry is spontaneously broken, and we
discuss its observational signatures. Especially, the deflection angles have
important qualitative differences between tensor and scalar monopoles. If a
monopole were to be detected, it would be discriminated whether or not to
correspond to a tensor one. This phenomenon might open up new direction in the
search of Lorentz violation with future astrophysical observations.Comment: 5 pages, 4 figure
Economic analysis for transmission operation and planning
Restructuring of the electric power industry has caused dramatic changes in the use of transmission system. The increasing congestion conditions as well as the necessity of integrating renewable energy introduce new challenges and uncertainties to transmission operation and planning. Accurate short-term congestion forecasting facilitates market traders in bidding and trading activities. Cost sharing and recovery issue is a major impediment for long-term transmission investment to integrate renewable energy.
In this research, a new short-term forecasting algorithm is proposed for predicting congestion, LMPs, and other power system variables based on the concept of system patterns. The advantage of this algorithm relative to standard statistical forecasting methods is that structural aspects underlying power market operations are exploited to reduce the forecasting error. The advantage relative to previously proposed structural forecasting methods is that data requirements are substantially reduced. Forecasting results based on a NYISO case study demonstrate the feasibility and accuracy of the proposed algorithm.
Moreover, a negotiation methodology is developed to guide transmission investment for integrating renewable energy. Built on Nash Bargaining theory, the negotiation of investment plans and payment rate can proceed between renewable generation and transmission companies for cost sharing and recovery. The proposed approach is applied to Garver\u27s six bus system. The numerical results demonstrate fairness and efficiency of the approach, and hence can be used as guidelines for renewable energy investors. The results also shed light on policy-making of renewable energy subsidies
Antitumor activity of antimalarials in human breast cancer cells
Previously we showed that quinidine arrested MCF-7 cells in G1 phase of the cell cycle and led to a G1 to G0 transition followed by apoptotic cell death (Wang et al., 1998). The present experiments demonstrate that MCF-7, MCF-7ras, T47D, MDA-MB-231, and MDA-MB-435 cells transiently differentiate before undergoing apoptosis in response to quinidine. The cells accumulated lipid droplets and the cytokeratin 18 cytoskeleton was reorganized. Hyperacetylated histone H4 appeared within 2 h of the addition of quinidine to the medium, and levels were maximal by 24 h. Quinidine treated MCF-7 cells showed elevated p21/WAF1, hypophosphorylation and suppression of retinoblastoma protein, and down-regulation of cyclin D1. Quinidine did not show evidence for direct inhibition of histone deacetylase enzymatic activity in vitro. HDAC-1 was undetectable in MCF-7 cells 30 min after addition of quinidine to the growth medium. The proteasome inhibitors, MG-132 and lactacystin completely protected HDAC-1 from the action of quinidine. These data demonstrate that quinidine is a breast tumor cell differentiating agent that causes the loss of HDAC-1 via a proteasomal sensitive mechanism. Moreover, to determine whether effects of quinidine on cell differentiation and apoptosis is generalizable to quinoline antimalarials, we tested typical quinoline antimalarial drugs for their ability to regulate MCF-7 cell differentiation, hyperacetylation histone H4 and apoptosis. MTS IC50 of amodiaquin, chloroquine, primaquine, quinidine as well as quinine induced hyperacetylation of histone H4 without inhibiting HDAC activity. These results indicate that an alkylamino-substituted quinoline ring might be important for acetylation of histone H4. Accumulation of lipid droplets was observed in cells treated with chloroquine, primaquine, quinidine and quinine. Only MTS IC50 of chloroquine and quinidine increased p21(WAF1) protein levels and apoptosis. The data imply that p21(WAF1) might play a determining role in apoptosis in MCF-7 cells treated with antimalarials. Chloroquine was most active in stimulating MCF-7 apoptosis, and quinine was most active in promoting MCF-7 cell differentiation. We conclude that distinct mechanisms are responsible for breast tumor cell differentiation and activation of apoptosis by quinoline antimalarials. Alkylamino-substituted quinoline ring compounds represented by quinidine, quinine and chloroquine will be useful model compounds in the search for more active breast tumor differentiating agents
Deep Neural Machine Translation with Linear Associative Unit
Deep Neural Networks (DNNs) have provably enhanced the state-of-the-art
Neural Machine Translation (NMT) with their capability in modeling complex
functions and capturing complex linguistic structures. However NMT systems with
deep architecture in their encoder or decoder RNNs often suffer from severe
gradient diffusion due to the non-linear recurrent activations, which often
make the optimization much more difficult. To address this problem we propose
novel linear associative units (LAU) to reduce the gradient propagation length
inside the recurrent unit. Different from conventional approaches (LSTM unit
and GRU), LAUs utilizes linear associative connections between input and output
of the recurrent unit, which allows unimpeded information flow through both
space and time direction. The model is quite simple, but it is surprisingly
effective. Our empirical study on Chinese-English translation shows that our
model with proper configuration can improve by 11.7 BLEU upon Groundhog and the
best reported results in the same setting. On WMT14 English-German task and a
larger WMT14 English-French task, our model achieves comparable results with
the state-of-the-art.Comment: 10 pages, ACL 201
Online-offline activities and game-playing behaviors of avatars in a massive multiplayer online role-playing game
Massive multiplayer online role-playing games (MMORPGs) are very popular in
China, which provides a potential platform for scientific research. We study
the online-offline activities of avatars in an MMORPG to understand their
game-playing behavior. The statistical analysis unveils that the active avatars
can be classified into three types. The avatars of the first type are owned by
game cheaters who go online and offline in preset time intervals with the
online duration distributions dominated by pulses. The second type of avatars
is characterized by a Weibull distribution in the online durations, which is
confirmed by statistical tests. The distributions of online durations of the
remaining individual avatars differ from the above two types and cannot be
described by a simple form. These findings have potential applications in the
game industry.Comment: 6 EPL pages including 10 eps figure
FOXP3 interacts with hnRNPF to modulate pre-mRNA alternative splicing
FOXP3 promotes the development and function of regulatory T cells mainly through regulating the transcription of target genes. RNA alternative splicing has been implicated in a wide range of physiological and pathophysiological processes. We report here that FOXP3 associates with heterogeneous nuclear ribonucleoprotein (hnRNP) F through the exon 2-encoded region of FOXP3 and the second quasi-RNA recognition motif (qRRM) of hnRNPF. FOXP3 represses the ability of hnRNPF to bind to its target pre-mRNA and thus modulates RNA alternative splicing. Furthermore, overexpression of mouse hnRNPF in in vitro-differentiated regulatory T cells (Tregs) reduced their suppressive function. Thus, our studies identify a novel mechanism by which FOXP3 regulates mRNA alternative splicing to modulate the function of regulatory T cells
Aromadendrin protects mouse liver from sepsis-induced injury by inhibiting NF-κB signaling pathway
Purpose: To investigate the protective role of aromadendrin in septic liver injury in mice, and its mechanism of action.Methods: Eight-week-old male C57BL/6 mice (n=6 for each group) were administrated with aromadendrin (SMB00175, Sigma-Aldrich) at 0 mg/kg, 30 mg/kg and 60 mg/kg via a hypodermic intraperitoneal injection. HE staining was used to examine liver histopathological structural changes in the liver while DAPI/Tunel staining was employed to evaluate liver cell apoptosis. The mRNA expression levels of TNF-α, IL-1β and IL-6 were determined by quantitative reverse transcriptionpolymerase chain reaction (qRT-PCR). Moreover, enzyme-linked immunosorbent assay (ELISA)was applied to assess the levels of TNF-α, IL-1β and IL-6, as well as the activities of catalase (CAT), antioxidant glutathione (GSH), superoxide dismutase (SOD) and malondialdehyde (MDA). Moreover, the protein levels of p65, p-p65, p-IκBα and IκBα were analyzed by Western blotting.Results: The liver tissues exhibited severe structural damages, with edema, necrosis, and neutrophil infiltration, but recovered as a result of aromadendrin treatment (p < 0.05). The increased serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in CLP mice were reduced by aromadendrin, which also attenuated liver injury and cell apoptosis. Aromadendrin inhibited the levels ofu TNF-α, IL-1β and IL-6 in the mice, while the activities of GSH and antioxidant enzymes (SOD and CAT) were also significantly lowered in the mice, but attenuated by aromadendrin (p < 0.05). Aromadendrin also prevented the increased level of MDA, and suppressed the phosphorylation of p65 and IκBα (p < 0.05).Conclusion: Aromadendrin protects mouse liver from sepsis-induced injury by inhibiting NF-κB signaling in vivo, thus suggesting a potential strategy for the therapy of sepsis-induced liver injury
- …