1,597 research outputs found

    Dynamical correlation functions and the related physical effects in three-dimensional Weyl/Dirac semimetals

    Get PDF
    We present a unified derivation of the dynamical correlation functions including density-density, density-current and current-current, of three-dimensional Weyl/Dirac semimetals by use of the Passarino-Veltman reduction scheme at zero temperature. The generalized Kramers-Kronig relations with arbitrary order of subtraction are established to verify these correlation functions. Our results lead to the exact chiral magnetic conductivity and directly recover the previous ones in several limits. We also investigate the magnetic susceptibilities, the orbital magnetization and briefly discuss the impact of electron interactions on these physical quantities within the random phase approximation. Our work could provide a starting point for the investigation of the nonlocal transport and optical properties due to the higher-order spatial dispersion in three-dimensional Weyl/Dirac semimetals.Comment: 21 pages, 3+1 figures, 1 table. Accepted in PR

    Robust estimates in generalized partially linear models

    Full text link
    In this paper, we introduce a family of robust estimates for the parametric and nonparametric components under a generalized partially linear model, where the data are modeled by yi∣(xi,ti)∼F(⋅,μi)y_i|(\mathbf{x}_i,t_i)\sim F(\cdot,\mu_i) with \mu_i=H(\eta(t_i)+\mathbf{x}_i^{\mathrm{T}}\beta), for some known distribution function F and link function H. It is shown that the estimates of β\beta are root-n consistent and asymptotically normal. Through a Monte Carlo study, the performance of these estimators is compared with that of the classical ones.Comment: Published at http://dx.doi.org/10.1214/009053606000000858 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Quantile regression in partially linear varying coefficient models

    Full text link
    Semiparametric models are often considered for analyzing longitudinal data for a good balance between flexibility and parsimony. In this paper, we study a class of marginal partially linear quantile models with possibly varying coefficients. The functional coefficients are estimated by basis function approximations. The estimation procedure is easy to implement, and it requires no specification of the error distributions. The asymptotic properties of the proposed estimators are established for the varying coefficients as well as for the constant coefficients. We develop rank score tests for hypotheses on the coefficients, including the hypotheses on the constancy of a subset of the varying coefficients. Hypothesis testing of this type is theoretically challenging, as the dimensions of the parameter spaces under both the null and the alternative hypotheses are growing with the sample size. We assess the finite sample performance of the proposed method by Monte Carlo simulation studies, and demonstrate its value by the analysis of an AIDS data set, where the modeling of quantiles provides more comprehensive information than the usual least squares approach.Comment: Published in at http://dx.doi.org/10.1214/09-AOS695 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Topological responses from chiral anomaly in multi-Weyl semimetals

    Get PDF
    Multi-Weyl semimetals are a kind of topological phase of matter with discrete Weyl nodes characterized by multiple monopole charges, in which the chiral anomaly, the anomalous nonconservation of an axial current, occurs in the presence of electric and magnetic fields. Electronic transport properties related to the chiral anomaly in the presence of both electromagnetic fields and axial electromagnetic fields in multi-Weyl semimetals are systematically studied. It has been found that the anomalous Hall conductivity has a modification linear in the axial vector potential from inhomogeneous strains. The axial electric field leads to an axial Hall current that is proportional to the distance of Weyl nodes in momentum space. This axial current may generate chirality accumulation of Weyl fermions through delicately engineering the axial electromagnetic fields even in the absence of external electromagnetic fields. Therefore, this work provides a nonmagnetic mechanism of generation of chirality accumulation in Weyl semimetals and might shed new light on the application of Weyl semimetals in the emerging field of valleytronics.Comment: 13 pages, 2 tables, 2 figures, accepted by Physical Review

    RKKY interaction in three-dimensional electron gases with linear spin-orbit coupling

    Get PDF
    We theoretically study the impacts of linear spin-orbit coupling (SOC) on the Ruderman-Kittel-Kasuya-Yosida interaction between magnetic impurities in two kinds of three-dimensional noncentrosymmetric systems. It has been found that linear SOCs lead to the Dzyaloshinskii-Moriya interaction and the Ising interaction, in addition to the conventional Heisenberg interaction. These interactions possess distinct range functions from three dimensional electron gases and Dirac/Weyl semimetals. In the weak SOC limit, the Heisenberg interaction dominates over the other two interactions in a moderately large region of parameters. Sufficiently strong Rashba SOC makes the Dzyaloshinskii-Moriya interaction or the Ising interaction dominate over the Heisenberg interaction in some regions. The change in topology of the Fermi surface leads to some quantitative changes in periods of oscillations of range functions. The anisotropy of Ruderman-Kittel-Kasuya-Yosida interaction in bismuth tellurohalides family BiTeXX (XX = Br, Cl, and I) originates from both the specific form of Rashba SOC and the anisotropic effective mass. Our work provides some insights into understanding observed spin textures and the application of these materials in spintronics.Comment: 11 pages, 4 figures, Final Version in PR

    Approximations and Bounds for (n, k) Fork-Join Queues: A Linear Transformation Approach

    Full text link
    Compared to basic fork-join queues, a job in (n, k) fork-join queues only needs its k out of all n sub-tasks to be finished. Since (n, k) fork-join queues are prevalent in popular distributed systems, erasure coding based cloud storages, and modern network protocols like multipath routing, estimating the sojourn time of such queues is thus critical for the performance measurement and resource plan of computer clusters. However, the estimating keeps to be a well-known open challenge for years, and only rough bounds for a limited range of load factors have been given. In this paper, we developed a closed-form linear transformation technique for jointly-identical random variables: An order statistic can be represented by a linear combination of maxima. This brand-new technique is then used to transform the sojourn time of non-purging (n, k) fork-join queues into a linear combination of the sojourn times of basic (k, k), (k+1, k+1), ..., (n, n) fork-join queues. Consequently, existing approximations for basic fork-join queues can be bridged to the approximations for non-purging (n, k) fork-join queues. The uncovered approximations are then used to improve the upper bounds for purging (n, k) fork-join queues. Simulation experiments show that this linear transformation approach is practiced well for moderate n and relatively large k.Comment: 10 page
    • …
    corecore