3,148 research outputs found

    Putting fear in its place: remapping of hippocampal place cells during fear conditioning

    Get PDF
    We recorded hippocampal place cells in two spatial environments: a training environment in which rats underwent fear conditioning and a neutral control environment. Fear conditioning caused many place cells to alter ( or remap) their preferred firing locations in the training environment, whereas most cells remained stable in the control environment. This finding indicates that aversive reinforcement can induce place cell remapping even when the environment itself remains unchanged. Furthermore, contextual fear conditioning caused significantly more remapping of place cells than auditory fear conditioning, suggesting that place cell remapping was related to the rat's learned fear of the environment. These results suggest that one possible function of place cell remapping may be to generate new spatial representations of a single environment, which could help the animal to discriminate among different motivational contexts within that environment

    CFM@MediaEval 2017 Retrieving diverse social images task via re-ranking and hierarchical clustering

    Full text link
    © 2017 Author/owner(s). This paper presents an approach based on re-ranking and hierarchical clustering (HC) for MediaEval 2017 Retrieving Diverse Social Images Task. The experimental results on the development and test set demonstrate that the proposed approach can significantly improve relevance and visual diversity of the query results. Our approach achieves a good tradeoff between relevance and diversity and a result in F1@20 of 0.6533 for the employed test data

    BMC@MediaEval 2017 multimedia satellite task via regression random forest

    Full text link
    © 2017 Author/owner(s). In the MediaEval 2017 Multimedia Satellite Task, we propose an approach based on regression random forest which can extract valuable information from a few images and their corresponding metadata. The experimental results show that when processing social media images, the proposed method can be high-performance in circumstances where the images features are low-level and the training samples are relatively small of number.Additionally,when the low-level color features of satellite images are too ambiguous to analyze, random forest is also a efiective way to detect flooding area

    Data driven discovery of cyber physical systems

    Get PDF
    Abstract: Cyber-physical systems embed software into the physical world. They appear in a wide range of applications such as smart grids, robotics, and intelligent manufacturing. Cyber-physical systems have proved resistant to modeling due to their intrinsic complexity arising from the combination of physical and cyber components and the interaction between them. This study proposes a general framework for discovering cyber-physical systems directly from data. The framework involves the identification of physical systems as well as the inference of transition logics. It has been applied successfully to a number of real-world examples. The novel framework seeks to understand the underlying mechanism of cyber-physical systems as well as make predictions concerning their state trajectories based on the discovered models. Such information has been proven essential for the assessment of the performance of cyber-physical systems; it can potentially help debug in the implementation procedure and guide the redesign to achieve the required performance

    Simulating the Hydraulic Characteristics of the Lower Yellow River By the Finite-Volume Technique

    Get PDF
    The finite-volume technique is used to solve the two-dimensional shallow-water equations on unstructured mesh consisting of quadrilateral elements. In this paper the algorithm of the finite-volume method is discussed in detail and particular attention is paid to accurately representing the complex irregular computational domain. The lower Yellow River reach from Huayuankou to Jiahetan is a typical meandering river. The generation of the computational mesh, which is used to simulate the flood, is affected by the distribution of water works in the river channel. The spatial information about the two Yellow River levee, the protecting dykes, and those roads that are obviously higher than the ground, need to be used to generate the computational mesh. As a result these dykes and roads locate the element interfaces of the computational mesh. In the model the finite-volume method is used to solve the shallow-wave equations, and the Osher scheme of the empirical function is used to calculate the flux through the interface between the neighbouring elements. The finite-volume method has the advantage of using computational domain with complex geometry, and the Osher scheme is a method based on characteristic theory and is a monotone upwind numerical scheme with high resolution. The flood event with peak discharge of 15 300 m(3)/s, occurring in the period from 30 July to 10 August 1982, is simulated. The estimated result indicates that the simulation method is good for routing the flood in a region with complex geometry. Copyright (C) 2002 John Wiley Sons, Ltd

    Electrochemical determination of hydroquinone using hydrophobic ionic liquid-type carbon paste electrodes

    Get PDF
    Three types of carbon paste electrodes (CPEs) with different liquid binders were fabricated, and their electrochemical behavior was characterized via a potassium hexacyanoferrate(II) probe. 1-Octyl-3-methylimidazolium hexafluorophosphate ionic liquid (IL) as a hydrophobic conductive pasting binder showed better electrochemical performance compared with the commonly employed binder. The IL-contained CPEs demonstrated excellent electroactivity for oxidation of hydroquinone. A diffusion control mechanism was confirmed and the diffusion coefficient (D) of 5.05 × 10-4 cm2 s-1 was obtained. The hydrophobic IL-CPE is promising for the determination of hydroquinone in terms of high sensitivity, easy operation, and good durability

    A general lithography-free method of microscale/nanoscale fabrication and patterning on Si and Ge surfaces

    Get PDF
    Here, we introduce and give an overview of a general lithography-free method to fabricate silicide and germanide micro-/nanostructures on Si and Ge surfaces through metal-vapor-initiated endoepitaxial growth. Excellent controls on shape and orientation are achieved by adjusting the substrate orientation and growth parameters. Furthermore, micro-/nanoscale pits with controlled morphologies can also be successfully fabricated on Si and Ge surfaces by taking advantage of the sublimation of silicides/germanides. The aim of this brief report is to illustrate the concept of lithography-free synthesis and patterning on surfaces of elemental semiconductors, and the differences and the challenges associated with the Si and the Ge surfaces will be discussed. Our results suggest that this low-cost bottom-up approach is promising for applications in functional nanodevices

    Movement variability in stroke patients and controls performing two upper limb functional tasks: a new assessment methodology

    Get PDF
    Background: In the evaluation of upper limb impairment post stroke there remains a gap between detailed kinematic analyses with expensive motion capturing systems and common clinical assessment tests. In particular, although many clinical tests evaluate the performance of functional tasks, metrics to characterise upper limb kinematics are generally not applicable to such tasks and very limited in scope. This paper reports on a novel, user-friendly methodology that allows for the assessment of both signal magnitude and timing variability in upper limb movement trajectories during functional task performance. In order to demonstrate the technique, we report on a study in which the variability in timing and signal magnitude of data collected during the performance of two functional tasks is compared between a group of subjects with stroke and a group of individually matched control subjects. Methods: We employ dynamic time warping for curve registration to quantify two aspects of movement variability: 1) variability of the timing of the accelerometer signals' characteristics and 2) variability of the signals' magnitude. Six stroke patients and six matched controls performed several trials of a unilateral ('drinking') and a bilateral ('moving a plate') functional task on two different days, approximately 1 month apart. Group differences for the two variability metrics were investigated on both days. Results: For 'drinking from a glass' significant group differences were obtained on both days for the timing variability of the acceleration signals' characteristics (p = 0.002 and p = 0.008 for test and retest, respectively); all stroke patients showed increased signal timing variability as compared to their corresponding control subject. 'Moving a plate' provided less distinct group differences. Conclusion: This initial application establishes that movement variability metrics, as determined by our methodology, appear different in stroke patients as compared to matched controls during unilateral task performance ('drinking'). Use of a user-friendly, inexpensive accelerometer makes this methodology feasible for routine clinical evaluations. We are encouraged to perform larger studies to further investigate the metrics' usefulness when quantifying levels of impairment

    Inactivation Kinetics of beta-N-Acetyl-D-glucosaminidase from Green Crab (Scylla serrata) in Dioxane Solution

    Get PDF
    Natural Science Foundation of China [40576066, 30500102]; Program for Innovative Research Team in Science and Technology in Fujian Province Universitybeta-N-Acetyl-D-glucosaminidase (NAGase, EC.3.2.1.52), which catalyzes the cleavage of N-acetylglucosamine polymers, is a composition of chitinase and cooperates with endochitinase and exo-chitinase to disintegrate chitin into N-acetylglucosamine (NAG). In this investigation, A NAGase from green crab (Scylla serrata) was purified and the effects of dioxane on the enzyme activity for the hydrolysis of p-Nitrophenyl-N-acetyl-beta-D-glucosaminide (pNP-NAG) were studied. The results show that appropriate concentrations of dioxane can lead to reversible inactivation of the enzyme and the inactivation is classified as mixed type. The value of IC(50), the dioxane (inactivator) concentration leading to 50% activity lost, is estimated to be 0.68%. The kinetics of inactivation of NAGase in the appropriate concentrations of dioxane solution has been studied using the kinetic method of the substrate reaction. The rate constants of inactivation have been determined. The results showed that k(+0) is much larger than k'(+0), indicating the free enzyme molecule is more fragile than the enzyme-substrate complex in the dioxane solution. It is suggested that the presence of the substrate offers marked protection of this enzyme against inactivation by dioxane
    corecore