
Supplementary Information: Data Driven Discovery of Cyber

Physical Systems

Ye Yuan et al.

SUPPLEMENTARY NOTES

Supplementary Note 1: Notations

Rn: denotes the n-dimensional Euclidean space.

Z: denotes the set of integers, . . . ,�1, 0, 1,

kxk`0 : the `0-norm of a vector x, i.e., kxk`0 =
Pn

i=1
|xi|

0 (defining 00 = 0).

kxk`1 : the `1-norm of a vector x, i.e., kxk`1 =
Pn

i=1
|xi|.

kxk`2 : the `2-norm of a vector x, i.e., kxk`2 = (
Pn

i=1
|xi|

2)1/2.

kAkF : the Frobenius-norm of a matrix A, i.e., kAkF = (trace(AT
A))1/2.

A: for a matrix A 2 RM⇥N , A[i, j] 2 R denotes the element in the ith row and j
th column,

A[i, :] 2 R1⇥N denotes its ith row, A[:, j] 2 RM⇥1 denotes its jth column.

↵: for a column vector ↵ 2 RN⇥1, ↵[i] denotes its ith element.

Ik: a k-dimensional identity matrix.

0k: a k-dimensional zero matrix.

Supplementary Note 2: Introduction to Hybrid Dynamical Systems

A dynamical system describes how state variables (typically physical quantities) evolve

with respect to time. Following definitions in [1], we define three types of variables.

• continuous state variables: if the state variable takes value in Rn for n � 1.

• discrete state variables: if the state variable takes value in a finite set, for example,

{1, 2, 3, . . .}.

• hybrid state variables: if a part of the state variables are continuous and the other

discrete.

Based on the time set over which the state evolves, we classify the dynamical systems as:

1

• continuous time: if the set of time is a subset of the real line R. Normally we use t 2 R
to denote the continuous time. The evolution of the state-variables in continuous time

can be described as ordinary di↵erential equations.

• discrete time: if the set of time is a subset of the integers. Normally we use k 2 Z
to denote discrete time. The evolution of the state-variables in discrete time can be

described as di↵erence equations.

A hybrid dynamical system H, is defined as a tuple, H = (W ,M,F , T) with the following

definitions:

• W defines a subspace in Rm+n for input-output variables u(t) 2 Rm
,y(t) 2 Rn;

• M defines a countable, discrete set of modes in which only a single mode, m(t) 2

{1, 2, . . . , K}, is occupied at a given time;

• F defines a countable discrete set of first-order di↵erential equations:

F =

⇢
dy(t)

dt
= Fk (y(t),u(t))) | k = 1, 2, . . . , K

�
.

• T defines a countable discrete set of transitions, where Ti!j denotes a Boolean expres-

sion that represents the condition to transfer from mode i to j.

The signals y(t) and u(t) are sampled at a rate h > 0, i.e. sampled at times 0, h, 2h, 3h....

For fast enough sampling (or low h), standard system identification typically obtains first

a discrete-time system, and then coverts it to a continuous-time system [2]. One of the

simplest methods to approximate derivatives is to consider

dy(t)

dt
⇡

y(t+ h) � y(t)

h
,

which yields the discrete-time system

y(t+ h) = y(t) + h Fk(y(t),u(t)) , fk(y(t),u(t)), k 2 {1, 2, . . . , K}.

For simplification of notation, assume the system can be written as

y(t+ h) = fk(y(t),u(t)) , Ik(y(t)) + hk(u(t)), k 2 {1, 2, . . . , K}.

Hence, the class of systems considered is discrete-time, Markovian and nonlinear. While

this is already a very rich class of systems, it can be easily extended to more general non-

linear systems, including, for example, dynamics of non-separable nonlinear functions of

(y(t),u(t)).

2

Without loss of generality, we can rescale the time variable t so that h = 1. Thus, we

can construct a mathematical model for hybrid dynamical systems

m(t+ 1) = T (m(t),y(t),u(t)),

y(t+ 1) = f(m(t),y(t),u(t)) =

8
>>>><

>>>>:

f1(y(t),u(t)), if m(t) = 1,

... ,
...

fK(y(t),u(t)), if m(t) = K.

(1)

Example 1 Consider again the temperature control system in Supplementary Figure 1, con-

sisting of a heater and a thermostat. The variables in this model are the room temperature

y(t) 2 R and the operating mode of the heater (on or o↵). Assuming a sampling time of

h > 0, we obtain the following approximate di↵erence equations (discretized from an ordinary

di↵erential equation) for the temperature

Subsystem 1 (heat o↵) :
y(t+ 1) � y(t)

h
⇡ �ay(t),) y(t+ 1) = (1 � ah)y(t).

Subsystem 2 (heat on) :
y(t+ 1) � y(t)

h
⇡ �a(y(t) � 30),) y(t+ 1) = (1 � ah)y(t) + 30ah.

These two equations model how the temperature changes under the heater o↵ or on,

respectively. The transition logics between the two subsystems are

Transition logic from subsystem 1 to 2 T1!2 : y  19,

Transition logic from subsystem 2 to 1 T2!1 : y � 21,

representing the controller of the operating mode of the heater. Given this hybrid dynamical

system, we can study its stability or simulate it to check possible state trajectories. Note that,

in practice, hybrid dynamical systems, such as this one, are usually unknown or only partially

known. The goal of this paper is to infer both the above subsystems and the transition logics

(Fig. 1(a)) from only time-series data of the temperature in Fig. 1(c).

Supplementary Note 3: Examples

This section applies IHYDE to more than ten examples ranging from power systems to

robotics, showcasing the wide range of applicability of the proposed IHYDE method. The

data structure of each dataset is shown in Supplementary Table 3.

3

Example 1: Hysteresis Relay

One of the most common Cyber Physical Systems is the Hysteresis Relay. It is found, for

example, in almost all thermostats: the heater is turned on when the temperature is below

a threshold, and turned o↵ when the temperature is above another threshold. Typically, the

low and high temperature switching are di↵erent to avoid frequent switching, which could

damage the system. The Hysteresis Relay can be found in physical, chemical, engineering

and biological applications.

The datasets for discovery are generated by Ly et. al. in [3]. The additive noise level

varies from 0% to 6% in 2% increments, i.e., Np = �noise
�y

⇥ 100%, where �noise is the noise

variance and �y is the variance of the measurement. We apply the proposed IHYDE to data

generated by an unknown Hysteresis Relay to discover its hybrid dynamical model (shown

in Supplementary Figure 3a). Supplementary Table 4 shows the detailed information about

this data. The discovered systems are shown in Supplementary Table 5 and Supplementary

Table 6 using 2000 data-points respectively.

Using IHYDE for subsystems identification, we successfully identify that there are only

two subsystems. In addition, the two identified subsystems are consistent with or close to

the true ones from both noiseless and noisy data. Specifically, with or without redundant

dictionary functions, we are able to identify the true systems, achieving very similar discovery

results. This, in other words, demonstrates that the IHYDE is able to discover the true

subsystems, the number of subsystems together with parameterizations of every subsystem.

Once all subsystems have been identified and all data points have been classified, IHYDE

identifies the transition logics between subsystems. When there is no redundant dictionary

function (i.e., when prior knowledge is available about the structure of transition logics),

IHYDE is able to precisely identify the correct transition logics. The identified results

are shown in Supplementary Table 7. When there exists redundant dictionary functions,

IHYDE still successfully identifies the transition logics. The identified results are shown in

Supplementary Table 8.

4

Example 2: Continuous Hysteresis Loop

A Continuous Hysteresis Loop is yet another classical hybrid system– here we use the

Preisach model [3] for data simulation. In this setup, each subsystem has its own input-

output behavior while the transitions occur when the input hits certain thresholds as shown

in Supplementary Figure 3b. The detailed information is summarized in Supplementary

Table 9. We apply the IHYDE to reverse engineering the Continuous Hysteresis Loop using

2000 data points generated by [3].

The identified systems are shown in Supplementary Table 10 and Supplementary Table

11. In contrast with the previous Hysteresis Relay example, the IHYDE will obtain false

classification results as the noise level increases. Yet, IHYDE is still able to identify the

actual subsystem dynamics up to some precision.

Once all subsystems have been identified and all data points have been classified, IHYDE

identifies the transition logics between subsystems. Supplementary Table 12 shows that

IHYDE can find the true transition logics without redundant dictionary functions. Even

when there exists redundant basis functions, IHYDE is able to precisely identify the correct

transition logics. The identified results are shown Supplementary Table 13.

Example 3: Phototaxis Robot

Consider a Phototaxis Robot with a hybrid dynamical system model shown in Supple-

mentary Figure 3c [4], the robot has phototaxis movement: it approaches, avoids, or remains

stationary depending on the color of light. As described in [3], the output y is velocity of

the robot. There are five inputs: u1 and u2 are the absolute positions of the robot and the

light, respectively, while {u3, u4, u5} is a binary, one-hot encoding of the light color, where

0 indicates the light is o↵ and 1 indicates the light is on.

Similar to previous examples, 2000 data points are used. The detailed information is

shown in Supplementary Table 14 and Supplementary Table 15. Even the IHYDE obtains

false data classification results as the noise level increases (shown in Supplementary Table 16

and in Supplementary Table 17). Yet, IHYDE is still able to identify the actual subsystem

dynamics without redundant dictionary functions when noise intensity is low. When there

exists redundant dictionary functions, IHYDE can identify all the subsystems when there is

5

no noise. When noise level increases, IHYDE still identifies the right number of subsystems,

except the third identified subsystem is di↵erent from the true one, i.e., y = 0.

Again, once all subsystems have been identified and all data points have been classified,

IHYDE identifies the transition logics between subsystems. IHYDE is able to precisely

identify the correct transition logics both when there is no redundant dictionary function

(Supplementary Table 18) and when there is (Supplementary Table 19). At a first glance,

the inferred transition logic is di↵erent from the actual ones. Given u3, u4, u5 are binary

values, still, the inferred transition logics are equivalent to the actual ones.

Example 4: Nonlinear Hybrid System

Consider the Nonlinear Hybrid System shown in Supplementary Figure 3d. This example

is a system without any physical counterpart, yet it is useful to evaluate the capabilities of

IHYDE for finding nonlinear expressions. The system consists of three subsystems, where

all of the behaviors and transition logics consist of nonlinear equations which cannot be

modeled via parametric regression. All the expressions are a function of the variables u1

and u2, the discriminant functions are not linearly separable and the transitions are modally

dependent.

Detailed information for this system is summarized in Supplementary Table 20 and Sup-

plementary Table 21. Using 2000 data points in dataset generated by [3], the identified

results are shown in Supplementary Table 22 and Supplementary Table 23. The IHYDE

successfully identifies that there are three subsystems that generate the datasets. In addi-

tion, the three identified subsystems are consistent with or close to the true ones from both

noiseless and noisy data. IHYDE precisely identifies the correct transition logics with and

without redundant dictionary functions (Supplementary Table 24 and Supplementary Table

25).

Example 5: Autonomous Car

This example presents the results of IHYDE applying to an autonomous car built in our

lab. The autonomous car consists of a body, a MK60t board, a servo motor, tow driving

motors and a camera. During execution, the embedded camera captures the upcoming road

6

layouts to check whether there is an upcoming straightaway or curve. Naturally, the car will

drive faster on straightaways and slower on the curves.

Based on this design principle, we would like to design a hybrid dynamical system with

two subsystems and simple transition logic to realize this goal as shown in the right panel

of Supplementary Figure 5. The car measures current speed by encoder and calculates the

�u, a control input to the motor. The speed control strategy is based on an incremental PI

control algorithm, which is widely used in control systems. The incremental PI algorithm

is developed from position PI algorithm. The position PI model is described as below and

can be seen in Supplementary Figure 4. r(t) represents the input of the whole system (the

expected speed vexpect(t)) and c(t) represents the output of the whole system (the real speed

observed v(t)).

In the figure, u(t) is the output of the controller and it can be calculated from e(t):

u(t) = P

2

4e(t) + 1

TI

tZ

0

e(t)dt

3

5 , (2)

where P is the constant for the proportional control, TI is the time constant for the integral

control. In the Laplace domain, Eq. (2) is equivalent to U(s) = D(s)E(s), where U(s) and

E(s) are the Laplace transform of u(t) and e(t) respectively, D(s) represents the transfer

function of the controller:

D(s) =
U(s)

E(s)
= P

✓
1 +

1

TIs

◆
. (3)

Since the controller is implemented by a computer, it must be first converted to discrete

time. The integral can be approximated by

tZ

0

e(t)dt ⇡

kX

i=0

Te(i))
de(t)

dt
⇡

e(k) � e(k � 1)

T
. (4)

So we obtain the following control law

u(k) = P

"
e(k) +

T

TI

kX

i=0

e(i)

#
. (5)

The position PI algorithm is usually approximated by an incremental PI algorithm:

�u(k) , u(k) � u(k � 1) = P [e(k) � e(k � 1)] + Ie(k), (6)

where I , PT
TI

. In the autonomous car example, we have

r(k) = vexpect(k), c(k) = v(k), e(k) = vexpect(k) � v(k). (7)

7

Here vexpect(k) is the expected velocity depending on whether there is an upcoming straight-

away or curve from the camera. We set up a faster velocity on straightaways and slower one

on the curves. Substituting e(k) into the Eq. 6, we obtain

�u(k) = P [v(k � 1) � v(k)] + P [vexpect(k) � vexpect(k � 1)] + I[vexpect(k) � v(k)]. (8)

When the car changes its expected velocity, this could lead to a more complicated hybrid

dynamical system than we would design as shown in Supplementary Figure 5. This side

e↵ect is due to the abrupt switching and discretization. In practice, we normally neglect

these subsystems in the modeling, analysis and design. The flow chart of the PI control

algorithm is shown in Supplementary Figure 6.

Next, we demonstrate how IHYDE can help in the design process. In the first experiment,

the autonomous car failed to drive through the track. We collected the experimental data

and used IHYDE to discover the failed system. We compared the discovered system model

with the to-be designed one and found an implementation error that led the system to failure.

We expected a higher speed when the car is running in a straight line and a lower speed while

it is running on a curve. The model from the failed experiments showed that the transition

logistics should be reversed as shown in Supplementary Figure 7 and Supplementary Table

27. We fixed the bug and as a result the autonomous car was able to run through the

track. Finally, as a validation, we collected the data shown in Supplementary Table 26 and

repeated the modeling process in Supplementary Table 28 and Supplementary Table 29.

In summary, IHYDE successfully reverse engineered the control strategy of the CPS.

Additionally, we deliberately swapped the straightway and curve speeds to mimic a software

bug. The modeled system immediately pinpointed the location of the faulty software and

yielded important information for debugging the system.

Example 6: Chua’s Circuit

In this subsection and the next one, we shall apply IHYDE to data that is obtained

from experiments shown in Supplementary Table 30 and Supplementary Table 31. We bulit

a Chua’s circuit (see Supplementary Figure 8) in our lab which is the simplest electronic

circuit that exhibits classic chaotic behavior. It consists of an inductor, two capacitors, a

passive resistor and an active nonlinear resistor as show in Supplementary Figure 9a which

8

fits the condition for chaos with the least components. The most important active nonlinear

resistor is a conceptual component and the resistor can be built with operational amplifiers

and linear resistors. The current-voltage characteristics of the nonlinear resistor are plotted

in Supplementary Figure 9b.

By design, the current-voltage relationship can be described as follows:

i(V) =

8
>>>><

>>>>:

aV + (b � a)(V � E), V > E,

aV, �E < V < E,

aV + (b � a)(V + E), V < �E,

(9)

or equivalently

i(V) = bV +
1

2
(a � b)(|V + E| � |V � E|). (10)

In both equations, a, b, E are parameters depicted in Supplementary Figure 9b.

The nonlinear resistor can be built using the circuit realization as shown in Supplementary

Figure 9c. From KCL and KVL, we obtain

C1dV1

dt
=

V2 � V1

R
� i(V1),

C2dV2

dt
=

V1 � V2

R
+ IL,

�L
dIL

dt
= V2,

(11)

where

• C1: Capacity of Capacitor 1. C2: Capacity of Capacitor 2. L: Inductance of the

Inductor.

• V1 : Voltage through Capacitor 1. V2: Voltage through Capacitor 2.

• IL: Current through Inductor. i: Current through the nonlinear resistor.

• a: the slope of low voltage for the nonlinear resistor. b: the slope of high voltage for

the nonlinear resistor.

Then we introduce a number of variables to simplify the above equations:

y1 =
V1⌧

E
, y2 =

V2⌧

E
, y3 =

IL⌧

E
, (12)

where E is the threshold voltage for the nonlinear resistor and ⌧ is a threshold of the Chua’s

circuit, which equals to E in this experiment. Let

↵ =
1

RC1

, � =
1

L
, f(y)|y= ⌧

E x =
R⌧

E
i(x), (13)

9

we can obtain the following equations

dy1

dt
= ↵[y2 � y1 � f(y1)],

RC2

dy2

dt
= y1 � y2 +Ry3,

dy3

dt
= ��y1,

(14)

where

f(x) =

8
>><

>>:

k1x+ b1, x < �⌧, (15a)

k0x, �⌧ < x < ⌧, (15b)

k1x+ b2. x > ⌧, (15c)

with

k0 = Ra, k1 = Rb, b1 = R(a � b)⌧, b2 = R(a � b)⌧.

The behavior of the system will be changed between chaos and non-chaos depending on the

value of R. Each mode in Eq. (15a), Eq. (15b) and Eq. (15c), corresponds to subsystem 1,

subsystem 2 and subsystem 3 respectively. We focus on the discovery of the first equation

in Eq. (14) and only collect the value of y1 and y2. The output data from the Chua’s circuit

can be seen in Supplementary Figure 9d.

From the true parameters in Supplementary Table 32, we can compute the true coe�cients

of f(x) to determine dy1
dt :

10�5
dy1

dt
=

8
>><

>>:

1.0858y2 � 0.2115y1 � 0.5349, y1 < �1.5, (16a)

1.0858y2 + 0.1451y1, �1.5 < y1 < 1.5, (16b)

1.0858y2 � 0.1994y1 + 0.5168, y1 > 1.5. (16c)

The algorithm accurately infers the form of Eq. (16c) from the data as shown in Supple-

mentary Table 33.

Example 7: Monitoring of Industrial Processes

The next example illustrates how IHYDE can be used for fault detection in mechanical

engineering. Experiments conducted on a wind turbine system experimental platform [5]

shown in Supplementary Figure 10 are used to verify its e↵ectiveness.

This system contains a power supply of 380V, an inverter, a motor, a gearbox, a power

generator, and a load. The platform is used to simulate the process of air flow through wind

10

turbines to generate electricity. Specifically, the motor with a gear reducer of 20 : 1 ratio

supplies the generator with mechanical power through the gearbox. In this experiment, we

adopt the mode of gearbox inversion to simulate the operation of wind turbine system. The

gearbox has been widely used to provide speed and torque conversions from a motor to

generator in wind turbines [6]. This system has a gearbox with three shafts, i.e., shaft with

low speed, shaft with intermediate speed and shaft with high speed. The load consumes the

power generated by the generator. We can measure the root-mean-square current and voltage

of the motor from the inverter. The current of generator can be captured by oscilloscope

and its voltage is measured through multimeter. We measure the voltage of the load in the

same way.

We perform experiments under normal and faulty conditions. Both experiments are

performed in the situation where the generator speed is 200 revolutions per minute and the

load is 1.5 KNm. One-third of the tooth width cut o↵ from the gear tooth on the high-speed

shaft is considered as the faulty condition. In the normal operation, the motor power is

383.01W and the generator power is 53.28W; the load voltage is 75V in the faulty condition.

Two sets of current data are measured at the frequency of 1000Hz connected in series

for identification. The first dataset contains 19, 995 data points sampled under normal

operating condition, the other has 20, 000 data points obtained from the faulty condition.

Then, we down-sample at the period of 0.3s and denote as i(k) in which k = 1, . . . , 133.

Supplementary Table 34 shows the detailed information for this data.

As described in the main text, here we used an online monitoring scheme. We construct

the output y 2 R
64⇥1, including 61 current measurements from 1.8s to 19.8s in the normal

condition and 3 data points from 20.1s to 20.7s in the faulty condition when the mismatch

is large. Specifically

y =


i(7) i(8) . . . i(70)

�T
.

With the candidate terms of the polynomial combinations of i(k), . . . , i(k+ 5) up to second

order, we construct a dictionary matrix � 2 R
64⇥28 as follows:

� =

2

66664

1 i(6) · · · i(1) i
2(6) . . . i

2(1)

...
...

...
...

...
...

...

1 i(69) . . . i(64) i
2(69) . . . i

2(64)

3

77775
.

11

It is worth mentioning that this experiment is a one-shot experiment. However, many

state of the art machine learning methods [7] need (a large number of) historical data in-

cluding its labels (healthy or faulty), while industrial data is often unlabeled and scarce.

Therefore, these algorithms are not a good solution to this type of one-shot industrial prob-

lem. And, this example demonstrates the capability of IHYDE to the identification of the

fault in industrial processes. Supplementary Figure 11 shows that the relative fitting error

ratio is small. The identified results and details of the IHYDE are presented in Supplemen-

tary Table 35, which shows that the identified time for the fault occurrence is the same as

the real fault time 68. We only use three fault points to realize the fault detection.

Example 8: Power Grid Fault Detection

The next example illustrates how IHYDE can be used in real-time monitoring appli-

cations. Consider the fault detection problem in a smart grid. The design of monitoring

schemes to diagnose anomalies caused by unpredicted or sudden faults on power networks

is of great importance.

Here we consider a benchmark power network, IEEE 14 bus test system. Suppose the

line connecting buses 6 and 12 disconnects at time 31, changing the admittance between

these two buses to zero. We simulate the data summarized in Supplementary Table 36

and only pass the data to IHYDE without other information. IHYDE can immediately

detect the occurrence of this event and estimate the new admittance matrix using the next

10 measurements. The identified results and parameters are summarized in Supplementary

Table 37. It successfully discovers two di↵erent subsystems from data and pinpoints the

di↵erence in the discovered subsystems which corresponds to the fault. Given the frequency

at which PMUs sample voltage and current, IHYDE is able to locate the fault in a few

hundred milliseconds after the event occurs, enabling the operators to detect the event,

identify its location, and take remedial actions in near real-time.

Example 9: Identification of Real-time Models for Smart Grid

This example illustrates how the proposed IHYDE method can be used to solve the

identification problem in smart grid, which contains two major parts, that is, smart infras-

12

tructure system and smart management system [8]. It is crucial to obtain real-time models

for smart management system to achieve resilient and e�cient operations. Accurate model

information is not only necessary for daily operation and scheduling, but also critical for

other advanced techniques such as state estimation and optimal power flow computation.

However, such information is not always available in distribution systems due to frequent

model changes. For example, the model of a distribution system connected with photovoltaic

panels maybe change once every eight hours [9]. Furthermore, some unexpected events, such

as line faults and unreported line maintenance, can lead to model changes. Moreover, net-

work reconfiguration (such as switch action for balancing loads and avoiding voltage sag)

happens frequently in distribution systems. Therefore, model identification in real-time is

meaningful.

We apply IHYDE to identify network models in real-time and to infer transition logics for

model changes using data from advanced metering infrastructure. The used data detailed in

Supplementary Table 38 is generated with the 33-bus benchmark distribution system [10].

Consider the situation where the increase of loads at some remote nodes of a feeder causes the

voltage sag, an operator then takes switch action for load balancing and voltage regulation.

Supplementary Figure 12 depicts the switching topologies and the real transition logics. The

detailed actions and switching time are shown in Supplementary Table 39. Measurements

are generated via solving nonlinear power flow equations using MATPOWER toolbox [11]

in MATLAB.

Suppose that we can measure all the active and reactive power consumption, voltage

magnitudes and phases of the nodes, denoted by Y as follows

Y =

2

66664

P1(1) Q1(1) V1(1) �1(1) · · · P33(1) Q33(1) V33(1) �33(1)

...
...

...
...

. . .
...

...
...

...

P1(M) Q1(M) V1(M) �1(M) · · · P33(M) Q33(M) V33(M) �33(M)

3

77775
,

where Vi(t), �i(t), Pi(t) and Qi(t) are the voltage magnitude, voltage phase, active and

reactive power of Bus i at time instant t, respectively. The total sampling time M is set to

180 in the following simulation. Supplementary Table 38 shows the detailed information of

this data.

For each node, we apply IHYDE to identify the responding column of the admittance

matrix. The output yi 2 R
2M⇥1 of Bus i is yi = [Pi(1), Qi(1), · · · , Pi(M), Qi(M)]T . The

13

quadratic terms for the voltages are chosen as the dictionary function based on Ohm’s law

and power factor; sine and cosine terms are also considered, since there are voltage angle

di↵erences for delivering power from one bus to another bus. The j
th column of dictionary

matrix �i
2 R

2M⇥66 is as follows:

�j = [Vi(1)Vj(1) cos �ij(1), Vi(1)Vj(1) sin �ij(1), · · · , Vi(M)Vj(M) cos �ij(M), Vi(M)Vj(M) sin �ij(M)]T ,

where �ij(t) = �i(t) � �j(t) denotes the phase di↵erence between nodal voltages of Bus i

and j at time instant t.

Supplementary Table 40 shows the identified results and the detailed tuning parameters

of the proposed algorithm. For example, at Bus 12, the maximum relative identification ratio

of Base configuration and Changed configuration are 0.00057% and 0.00182%, respectively.

The identified admittance matrices at time instants 31, 61, 91, 121, 151 are very di↵erent from

that of the previous moments, which indicates the model switching. The results demonstrate

that IHYDE can identify the models accurately and pinpoint model switching time correctly.

We add the di↵erence of voltage magnitude between di↵erent times, denoted by�V = V (t)�

V (t � 1), into dictionary matrix for logic identification. Supplementary Table 41 indicates

that the identified logic is consistent with the real logic with small error. Specifically, the

result of T1!2 (switching from subsystem 1 to 2) reveals that the voltage drop of node 10

at feeder 3 are more than 0.0500 at time 30, subsequently, switch action is taken to avoid

sharp voltage drop. The tie switch between Bus 12 and 22 is closed, while the sectionalizing

switch between Bus 11 and 12 opens. This is consistent with our preset reason that loads at

Bus 9, 10, 11 increase rapidly at time 30. There are many indistinct physical phenomenons

in actual power system and IHYDE can be utilized to help engineers understand the hidden

mechanism behind it.

Example 10: Discovery of Human Atrial Action Potential Models

In this section, we apply IHYDE to a human atrial action potential (AP) model proposed

in [12] to show the applicability of IHYDE to the discovery in biology. The parameters of

the human atrial AP model are determined based on the data that is directly measured on

human atrial cells and that is from AP model of guinea pig ventricular and rabbit atrial.

The AP model can reproduce a variety of observed AP behaviors and provide potential

14

insights into its underlying ionic mechanisms. The human atrial AP and ionic currents that

underlie its morphology are of great importance to our understanding and prediction of the

electrical properties of atrial tissues under normal and pathological conditions.

Specifically, the cell membrane is modeled as a capacitor connected in parallel with vari-

able resistances and batteries representing the ionic channels and driving forces. The AP

model includes 21 di↵erential equations and 163 parameters in total (see [12] for detailed

information). The membrane potential formulation is dV
dt = �(Iion+Ist)

C , where V is membrane

potential, and C is the constant total membrane capacitance. Iion and Ist are the total ionic

current and stimulus current flowing across the membrane, respectively.

Supplementary Figure 13 shows that the action potential generated by the AP model

through voltage clamp method is a spike-and-dome morphology commonly observed in hu-

man atrial AP recordings. We apply the stimulation current with 2 ms pulses of 2 nA am-

plitude across the cell membrane every 1000 ms. To check the performance of the IHYDE

method, we focus on two representative equations about gating variables x1 and x2 with

time-varying parameters as follows:
dx1

dt
= ↵1 � (↵1 + ⇢1)x1, (17)

dx2

dt
= ↵2 � (↵2 + ⇢2)x2, (18)

where x1 and x2 are fast and slow inactivation gating variables for fast inward Na+ current,

respectively. For convenience, we present the time-varying parameters ↵1,↵2, ⇢1, ⇢2:

↵1 =

8
><

>:

↵11 , 0.135 exp(�V+80

6.8), V < �40,

↵12 , 0, V � �40,

↵2 =

8
>>>><

>>>>:

↵21 , [�1.2714 ⇥ 105 exp(0.2444V)�

3.474 ⇥ 10�5 exp(�0.04391)] V+37.78
1+exp[0.311(V+79.23)] , V < �40,

↵22 , 0, V � �40,

⇢1 =

8
><

>:

⇢11 , 3.56 exp(0.079V) + 3.1 ⇥ 105 exp(0.35V), V < �40,

⇢12 , {0.13[1 + exp(�V+10.66
11.1)]}�1

, V � �40,

⇢2 =

8
><

>:

⇢21 = 0.1212 exp(�0.01052V)

1+exp[�0.1378(V+40.14)] , V < �40,

⇢22 = 0.3 exp(�2.535⇥10
�7V)

1+exp[�0.1(V+32)]
, V � �40.

When the gating variables x1 and x2 are equal to 1, the fast inward Na2+ current is inactive

15

completely. Supplementary Figure 14 depicts that they gradually rise to their resting values

0.9775 and 0.9649 after stimulus.

It is clearly observed that membrane voltage gradually returns to its stable resting po-

tential �81mV after the stimulation from Supplementary Figure 13. During the process,

the dynamics for gating variables x1 and x2 has been switched as shown in Supplementary

Figure 14 when the membrane voltage V goes through �40 mV. Supplementary Table 42

summarizes the data structure that is used for identification. We apply IHYDE to discover

the di↵erent models and the transition logics only using measurements. The first-order dif-

ferential values of x1 and x2 are considered as their output, respectively. For instance, we

down-sample the di↵erential value of x1 during 120 � 500 ms as its output

y1 =


dx1(120)

dt
,
dx1(120 + h)

dt
, · · · ,

dx1(499.8)

dt

�T
2 R

1267⇥1
.

The sampling period h is set to 0.3 ms, and there are 1267 data points for each variable.

The dictionary matrix of gating variables x1 and x2, denoted by �1 and �2, respectively,

are established based on the terms of the above equations

�
1 =

2

66664

exp(�V (t1)+80

6.8) x1(t1) exp(�
V (t1)+80

6.8) x1(t1)⇢11(t1) x1(t1)⇢12(t1)

...
...

...
...

exp(�V (tM)+80

6.8) x1(tM) exp(�V (tM)+80

6.8) x1(tM)⇢11(tM) x1(tM)⇢12(tM)

3

77775
,

�
2 =

2

66664

↵21(t1) x2(t1)↵21(t1) x2(t1)
exp(�0.01052V (t1))

1+exp[�0.1378(V (t1)+40.14)] x2(t1)
exp(�2.535⇥10

�7V (t1))
1+exp[�0.1(V (t1)+32)]

...
...

...
...

↵21(tM) x2(tM)↵21(tM) x2(tM) exp(�0.01052V (tM))

1+exp[�0.1378(V (tM)+40.14)] x2(tM) exp(�2.535⇥10
�7V (tM))

1+exp[�0.1(V (tM)+32)]

3

77775
,

where t1 and tM are 120 and 499.8 ms, respectively.

The identified results and the detailed parameters are summarized in Supplementary

Table 43. We can see that IHYDE identifies the subsystem and pinpoints the changing time

correctly. The identified logic (see Supplementary Table 44 and Supplementary Table 45)

for both gating variables are V < �40.0093, which is very close to the real logic V  �40.

Next, we repeat the modeling of this system with the assumption that the choice of

dictionary functions is unclear and/or the domain knowledge is lacking. In such cases, we

consider a canonical dictionary function, such as polynomials approximations. The results

are summarized in Supplementary Table 46. IHYDE can still detect the transition points.

16

However, the nonlinear dynamics are di↵erent than the true ones: as expected, it identifies

instead a polynomial approximation of the original nonlinear dynamics. While these dy-

namics can still be used for simulation and trajectory prediction, they are not in a form that

reveals physical meaning. For an interpretable model, we require domain knowledge. Please

see Supplementary Discussion 3 for another example on canonical dictionary functions.

Example 11: Non-hybrid Dynamical Systems

We also tested IHYDE on non-hybrid dynamical systems using datasets in [13] to illus-

trate the applicability of IHYDE. The details of simulation datasets in [13] are presented

in Supplementary Table 47. The results are summarized in Supplementary Table 48, and

Supplementary Table 49 shows the hyperparameters tuned for IHYDE. Overall, IHYDE

unifies previous results for the discovery of non-hybrid dynamical systems, such as examples

in [13, 14].

Supplementary Note 4: User’s Manual of the Code

Identification of hybrid dynamical systems (IHYDE) is a open-source Matlab toolbox

for automating the mechanistic modeling of hybrid dynamical systems from observed data.

IHYDE has low computational complexity, enabling its application to real-world CPS prob-

lems. IHYDE implements the clustering-based algorithms described in the Data-driven

Discovery of Cyber Physical Systems. It can also be used, potentially, for the creation of

guidelines for designing new CPSs. IHYDE uses routines of the CVX [15] and SLR [16]

toolboxes for constructing and solving disciplined convex programs (DCPs).

Download the latest version of IHYDE toolbox in a directory and add its path (and the

path of the subdirectories) to the Matlab path. The IHYDE toolbox consists of directo-

ries listed in Supplementary Table 51. Supplementary Table 52, Supplementary Table 53,

Supplementary Table 54 and Supplementary Table 55 give a brief introduction to IHYDE’s

API.

To quickly get familiar with IHYDE, examples are presented in the directory /CPSid.

These .m files can also be used as templates for other experiments. We shall use the au-

tonomous car example to explain the code briefly. First, we load the data:

17

addpath (’ . / t o o l s ’) ;

addpath (’ . / data ’) ;

b a s i s f u n c t i o n . work=’ o f f ’ ;

data=load (’ normal car . mat ’) ; %% load Data

index = 1000 :1400 ;

f lag = data . f lag (index) ; % 1: s t ragh tway 0 : curve

dy = data . dy (index) ;

v = data . v (index) /10 ;

po lyorder = 4 ; % The h i g h e s t order o f the po lynomia l i s 4 order

A= l i b r a r y (v , po lyorder ,memory , b a s i s f u n c t i o n) ;%make a l i b r a r y

A = A(memory+2:end , :) ;

dy = dy (memory+2:end) ; %dpwm {k}

f lag = f lag (memory+2:end) ; %f l a g {k}

v k1 = v(memory+1:end�1 , :) ; % v {k�1}

v k2 = v(memory : end�2 , :) ;% v {k�2}

v k3 = v(memory�1:end�3 , :) ;% v {k�3}

v = v(memory+2:end , :) ; % v {k}

Then, we initialize the parameters and identify the systems by function ihyde.

parameter .MAXITER = 5 ; %the i t e r f o r the s p a r s e s o l v e r a l gor i thm

parameter . max s = 20 ; % the max number o f subsys tems

parameter . e p s i l o n = [100 8] ; % the f i s t e lement in lambda i s

e p s i l o n z and the second i s ep s i l on w

parameter . Phi = A; % the l i b r a r y

parameter . y = dy ; % dpwm

parameter . normal i ze y = 1 ; % normal ize : 1 ; unnormalize :0

[r e s u l t]= ihyde (parameter) ; % in f e r r i n g subsys tems

Function ihyde will return a preliminary identified result which contains the details of

subsystems. Since we want to get a better result based on the minimum error principle, we

use function finetuning to fine-tune the results.

r e s u l t . e p s i l o n = parameter . e p s i l o n (2) ;% use ep s i l on w as the

18

e p s i l o n in f i n e t un i n g

r e s u l t . lambda = parameter . lambda (2) ;% use lambda w as the e p s i l o n

in f i n e t un i n g

r e s u l t . th r e sho ld = [0 . 0 5] ; %se t a t h r e s h o l d f o r c l u s t e r i n g

f i n a l r e s u l t = f i n e tun i ng (r e s u l t) ; % f in e t un i n g each subsystem

sys = f i n a l r e s u l t . sys ; % ge t the i d e n t i f i e d subsys tems

i d x s y s = f i n a l r e s u l t . idx ;% ge t the index o f each subsystem

The code for inferring transition logics between subsystems is shown below.

Phi2 = [ones (s ize (f lag)) f lag 1 ./ v sin (v) cos (v) v . ˆ2 v k1 . / v k2

v k3 .ˆ2] ;% l i b r a r y f o r i n f e r r i n g t r a n s i t i o n l o g i c between

subsys tems .

para l og . i d x s y s = idx sy s ;

pa ra l og . beta= 0 . 5 ; % the t r a d e o f f o f l1�sparse l o g i s t i c

r e g r e s s i on

para l og . y = dy ;

pa ra l og . Phi2 = Phi2 ;

[s y s l o g i c , labelMat , data] = i hyd e l o g i c (pa ra l og) ;

The identified results are saved in sys, idx sys and syslogic.

SUPPLEMENTARY DISCUSSIONS

The IHYDE algorithm has been tested in a number of examples. As the number of

dictionary functions and the amount of noise increase, the algorithm is eventually unable to

identify the actual model. Although it can fit data very well, it usually obtains more complex

models than the true ones. This is actually a typical problem in system identification [2].

When the data is not informative, it leads to non-identifiability issues, i.e., there will exist

multiple hybrid dynamical systems that can produce the same data, which prevents the

proposed IHYDE algorithm from finding the true system.

19

Supplementary Discussion 1: Identifiability

Consider the following linear system with unknown parameters k1 and k2

d

dt

2

64
x1

x2

3

75 =

2

64
k1 1 + k2

0 k1 + k2

3

75

2

64
x1

x2

3

75+

2

64
0

1

3

75 u,

y =


0 1

�
2

64
x1

x2

3

75 .

(19)

The observed output is plotted as follows in Supplementary Figure 15 (the system is stim-

ulated by an impulse input, i.e., u(t) = �(t) where �(·) is the Dirac delta function):

However, any k1, k2 with k1+k2 = 0.8 produces the same input-output data. For example,

the actual system

d

dt

2

64
x1

x2

3

75 =

2

64
0.4 1.4

0 0.8

3

75

2

64
x1

x2

3

75+

2

64
0

1

3

75 u,

y =


0 1

�
2

64
x1

x2

3

75 ,

(20)

and

d

dt

2

64
x1

x2

3

75 =

2

64
0.3 1.5

0 0.8

3

75

2

64
x1

x2

3

75+

2

64
0

1

3

75 u,

y =


0 1

�
2

64
x1

x2

3

75 ,

(21)

are indistinguishable from the input-output data alone. Hence, without more information,

the true parameters cannot be identified using any methods.

Supplementary Discussion 2: Data Informativity

The previous example demonstrates that, when the parameterization is not identifiable,

no algorithm is able to identify the correct parameters. Next, we shall demonstrate an-

other example where, even though the subsystem is identifiable, the data is not informative

20

enough. For example, some of the logic transitions never occur. Consider the following

hybrid dynamical system in Supplementary Figure 16. If the system starts at initial con-

dition y(0) = 18, then it always stays in subsystem 1. Hence, with the data generated, no

algorithm is able to identify the complete hybrid dynamical system.

Supplementary Discussion 3: Canonical dictionary functions

With an example, this section explores the e↵ect of dictionary functions when the right

choice of dictionary functions is unclear and/or domain knowledge is lacking. Consider a

hybrid dynamical system with two subsystems: subsystem 1 follows ẋ = �x
3, and subsystem

2 with ẋ = � cos(x). This hybrid system switches every 0.5s during t 2 [0, 10]. We set the

initial condition to x0 = 0.99 and the sampling period to 0.005s. Then, 2000 simulated

data points are obtained. We choose the first 1000 points as training data set, denoted by

Itrain = {1, · · · , 1000}, and the whole data as testing data set. Assume there is no prior

knowledge about the function forms of the subsystems. Then, pick a canonical dictionary

function consisting of polynomials up to fifth order, grid the hyperparameters using the

initial grid set in Supplementary Method 1, and use the minimum error principle to search

a best set of hyperparameters.

Supplementary Table 50 summarizes the identified results. IHYDE first correctly dis-

covers one of the subsystems ẋ = �x
3 and then discovers a second subsystem with the

form ẋ = �1 + 1

2
x
2, which is di↵erent from the true subsystem. On the other hand, this is

consistent with the Taylor series expansion of cos(x) = 1 �
1

2
x
2 +O(x4).

SUPPLEMENTARY METHODS

Supplementary Method 1: IHYDE Algorithm

When a hybrid dynamical system has a single subsystem, i.e.,K = 1 in Eq. (1), it becomes

a time-invariant nonlinear dynamical system. We start by briefly reviewing identification

tools for this class of systems from [13, 14], since parts of our proposed algorithm are based on

these tools. As explained before, our algorithm uses only time-series data to directly model

the system. Hence, the first step is to collect time-course input-output data (y(t),u(t))

21

uniformly sampled at a number of discrete time indices t = 1, 2, . . . ,M + 1. Let

Y =

2

66664
y(1) y(2) . . . y(M)

3

77775

T

, U =

2

66664
u(1) u(2) . . . u(M)

3

77775

T

.

Note that y(t) 2 Rn and u(t) 2 Rm, and so Y 2 RM⇥n and U 2 RM⇥m. Next, we construct

an overdetermined library �(Y,U) consisting of potential nonlinear functions that appear

in fk in Eq. (1). It is expected that the true nonlinearities are part of this library in order

to recover the true dynamics. The choice of these functions is guided by the particular field

of study. For example, the library would consist of sinusoidal functions in pendulums, and

polynomial and sigmoidal functions in biochemical networks. As an illustration, a library

consisting of constant or polynomials would result in the following dictionary matrix

�(Y,U) =


1 Y Y

P2 · · · U U
P2 · · ·

�
.

Here, higher polynomials are denoted as Y
P2 ,Y

P3 , etc. For example, Y
P2 denotes the

quadratic nonlinearities in the state variable Y , given by:

Y
P2 =

2

666666664

y
2

1
(1) y1(1)y2(1) · · · y

2

n(1)

y
2

1
(2) y1(2)y2(2) · · · y

2

n(2)

...
...

. . .
...

y
2

1
(M) y1(M)y2(M) · · · y

2

n(M)

3

777777775

.

Basically, each column of �(Y,U) represents a candidate function for a nonlinearity in f .

The number of functions in the library may be very large. However, since only a very small

number of these nonlinearities appear in each row of �(Y,U), we can set up a sparse regres-

sion problem to determine the sparse matrices of coe�cients W =


w1 w2 . . . wn

�
, where

wi 2 RP⇥1 and P is the total number of candidate functions in the library. The nonzero

elements in W determine which nonlinearities are active [13, 14] and the corresponding

parameters. Let

Ȳ ,

2

666666664

y1(2) . . . yn(2)

y1(3) . . . yn(3)

...
. . .

...

y1(M + 1) . . . yn(M + 1)

3

777777775

.

22

This results in the overall model Ȳ = �(Y,U)W + ⌅, where ⌅ =


⇠1 ⇠2 . . . ⇠n

�
and

⇠i 2 RM⇥1 is zero-mean i.i.d. Gaussian noise with covariance matrix �I, for some � � 0.

The work in [14], developed methods based on Sparse Bayesian Learning for identifying each

wi in the above equation as the following optimization:

w
⇤
i = argmin

wi

kȳi ��wik
2

`2 + �kwik`1 . (22)

Inferring Sub-systems

When K > 1, we can use a similar formulation as above. However, the outstanding

challenge is that there is no single W typically fits all the data due to the hybrid nature of

the dynamical system. In addition, we have no information about which data point belongs

to which subsystem. Next, we introduce a new method to tackle such a challenge.

Define Z = Ȳ ��W � ⌅. The goal is to find a Z
⇤ ,


z
⇤
1
z
⇤
2
. . . z

⇤
n

�
, Ȳ ��W

⇤
� ⌅

as sparse as possible, i.e.,

W
⇤ = argmin

W

nX

i=1

kzik`0 ,

subject to: Z = Ȳ ��W �⌅.

(23)

Correspondingly, we have z
⇤
i = ȳi � �w

⇤
i � ⇠i, where ȳi is the ith column of Ȳ. The

interpretation of this optimization is to find a W (or equivalently a subsystem) that fits

most of the input-output data. As a result, the indexes of the zero entries of Z⇤ correspond

to the indexes for input-output that can be fitted by a single subsystem. This initial idea

was similar to those presented in [17] for noiseless switching subsystem identification, yet

we now extend this idea to a robust Bayesian algorithm that works well for noisy data

(for detailed comparison, please refer to the following part: Supplementary Comparison).

To solve Eq. (23), assume, without loss of generality, that the dictionary matrix � is full

rank. Define a transformation matrix ⇥ 2 R(M�P)⇥M whose rows {⇥[1, :], . . . ,⇥[M �P, :]}

form a basis for the left null space of �. Then, it follows that ⇥Ȳ = ⇥Z + ⇥⌅. Using

standard maximum likelihood estimate and an appropriate Lagrange multiplier 1

2�z
, we now

can rewrite the above problem as an unconstrained minimization:

min
Z

1

2

���(˜̄Y �⇥Z)T⇧�1(˜̄Y �⇥Z)
���
2

F
+ �z

nX

i=1

kzik`0 , (24)

23

where ˜̄
Y , ⇥Ȳ and ⇧ = ⇥⇥T .

Remark 1 This is the key step in the later proposed algorithm; there is no W in this

optimization after the transformation. Instead, we are optimizing over the residual Z.

However, this problem is known to be computationally expensive. Instead, we use the

following convex relaxation

Z
⇤ = argmin

Z

1

2

���(˜̄Y �⇥Z)T⇧�1(˜̄Y �⇥Z)
���
2

F
+ �z

nX

i=1

kzik`1 .

We can decompose the above optimization to a number of smaller optimizations: for i =

1, . . . , n

z
⇤
i = argmin

zi

1

2
(˜̄yi �⇥zi)

T
⇧

�1(˜̄yi �⇥zi) + �zkzik`1 . (25)

Remark 2 Specifically, we used a Bayesian formulation to replace the optimizations in

Eq. (25) to achieve better empirical performance as detailed in the main text.

Once this problem is solved, we consider the index set I = {j| |z
⇤
i [j]|  ✏z} and further

identify the sparse coe�cients w⇤
i using the following optimization

w
⇤
i = argmin

wi

1

2
kȲ[I, i] ��[I, :]wik

2

`2 + �wkwik`1 .

The variables w⇤
i are the coe�cients of the identified subsystem.

Remark 3 The reason to enforce w
⇤
i to be sparse is due to the constructed dictionary matrix

� usually has extra terms that are not in the true dynamics.

We further define error = abs(ȳi � �w
⇤
i) (here abs is an elementary-wise operator which

returns the absolute value of every element of a vector) and we set the jth element of ȳi:

Ȳ[j, i] = 0 and the jth row of ⇥: ⇥[j, :] = 0 if the jth element of error is less than ✏w, for

some small ✏w > 0. This removes the data that has already been fitted by the subsystem.

Once we have the new Ȳ and ⇥, we can solve the same problem with the remaining time

points (where the corresponding elements of Ȳ and the corresponding row of ⇥ are nonzero)

using the exact same procedure. The number of iterations gives the minimum number of

subsystems. The proposed algorithm is summarized in Supplementary Algorithm 2. The

code implementation is available at https://github.com/HAIRLAB/CPSid with Supplemen-

tary Note 4, User’s Manual. In what follows, we shall briefly discuss extensions and variants

of Supplementary Algorithm 2, which can empirically improve the performance of IHYDE.

24

Remark 4 When there is only one subsystem, we show that Z
i
should be a zero matrix

from the first optimization in Eq. (25). Eq. (26) should be the same as Eq. (22) since

I = {1, 2, . . . ,M + 1}, which recovers the results for time-invariant nonlinear system iden-

tification in [13, 14]. As a result, IHYDE provides a unified point of view to the subsystem

identification problem for any K 2 {1, 2, . . .}.

25

Algorithm 2 Sub-systems Identification Algorithm
1: Input: Collect input-output data u(t) and y(t) for t = 1, 2, . . . , M + 1. Two pre-specified

thresholds ✏z and ✏w, two tuning parameters �z and �w, the upper bound of the number of

subsystems Kmax

2: Output: Return {Wi
} for i = 1, . . . , K and the number of subsystems K

3: Construct dictionary matrix �(Y,U) based on prior knowledge of the system

4: for j = 1, . . . , n do

5: for i = 1, . . . , Kmax do

6: Compute ⇥ in which all column span the left null space of ⇥: ⇥� = 0

7: Solve for zij from Algorithm 1

8: if zij = 0 then

9: K = i, Break

10: end if

11: h = 1 and I = []

12: for l = 1 . . . , M do

13: if the lth element of zij , i.e., abs(zij [l])  ✏z then

14: Set I[h] = l and h ! h + 1

15: end if

16: end for

17: Solve the following convex optimization

wi
j = arg min

wj

1

2
kȲ[I, j] ��[I, :]wjk

2

`2 + �wkwjk`1 (26)

18: error = abs(Ȳ[:, j] ��wi
j)

19: for l = 1 . . . , M do

20: if the lth element of error, i.e., error[l]  ✏w then

21: Set Ȳ[l, j] = 0 and ⇥[l, :] = 0

22: end if

23: end for

24: end for

25: end for

26: Return nonzero Wi ,

wi

1
. . . wi

n

�
for i = 1, . . . , K and the number of subsystems K

26

Comparison to [17] in the subsystems identification procedure

Bako proposed a nice algorithm that novelly uses sparsity for identifying switching sys-

tems [17]. A general framework is proposed for noiseless setting and Section 3.4 of [17]

suggests two ways to deal with the identification of subsystems with noisy data. The first

method in [17] sets up an upper bound for the noise, and therefore this method is not practi-

cal for Gaussian noise as we considered in this paper. The second method in [17] formulates

an optimization problem that tradeo↵s the residual (mismatch between data and prediction

from the model) and the energy of the noise. Next, we will show that the second method

could be viewed as a special case of our framework. What is more, our method includes

several iterations that considerably improves the results, as can be seen in the numerical

examples below.

The identification of switching linear systems can be formulated as:

ȳi = �wi + zi + ⇠i, i = 1, · · · , n, (27)

where each column of � 2 RM⇥P is a candidate function. Note that residual zi is sparse,

and ⇠i is Gaussian noise. Reference [17] searches the subsystems as follows:

min
zi,⇠i

�kzik`1 +
1

2
k⇠ik

2

`2 . (28)

Next, we show that, since the objective function is convex with respect to wi, it yields the

following form (where �+ is the pseudo inverse of �)

min
zi,wi

�kzik`1 +
1

2
kȳi ��wi � zik

2

`2 () min
zi

�kzik`1 +
1

2
k(I ���

+)(ȳi � zi)k
2

`2 . (29)

Let Q , I���
+, and rank(�) = k (k  min(M,P)). Using singular value decomposition,

� can be written as follows:

� = ASV
T =


A1M⇥k A2M⇥(M�k)

�
2

64
S1 k⇥k 0

0 0

3

75

2

64
V

T
1 k⇥P

V
T
2 (P�k)⇥P

3

75 = A1S1V
T
1
.

Therefore, the explicit form of �+ is �+ = V1S
�1

1
A

T
1
. Since A and V are unitary matrices,

one has

Q = IM � A1S1V
T
1
V1S

�1

1
A

T
1
= A2A

T
2
.

27

Remark 5 Rather than having the derivation we had above, [17] gives the orthogonal pro-

jection matrix as, Q = IM � �(�T
�)�1

�
T
. Note that it is only true by assuming that �

has full rank (which is usually not the case in our numerical examples).

One can rewrite Eq. (29) as,

min
zi

�kzik`1 +
1

2
kQ(ȳi � zi)k

2

`2 () min
zi

�kzik`1 +
1

2
(ȳi � zi)

T
A2A

T
2
(ȳi � zi).

In contrast, IHYDE is based on Bayesian calculus. As stated before that the transforma-

tion matrix ⇥ is the orthogonal left null space of matrix �, namely, ⇥� = 0. Left multiply

Eq. (27) by matrix ⇥ gives

⇥ȳi , ˜̄yi = ⇥zi +⇥⇠i.

To get an estimate of zi, we use Bayesian modeling to treat all unknowns as stochastic

variables with certain probability distributions [18]. Given the characteristics of the noise

⇠i, ⇥⇠i is Gaussian distributed with covariance matrix �⇥⇥
T , i.e., ⇥⇠i s N (0,�⇥⇥T). In

such a case, using the properties of Gaussian distributions, the likelihood of the output ˜̄yi

given the parameter zi is

p(˜̄yi|zi) = N (˜̄yi|⇥zi,�⇥⇥
T) / exp


�

1

2�
(˜̄yi �⇥zi)

T (⇥⇥T)�1(˜̄yi �⇥zi)

�
. (30)

Hence, using maximum likelihood estimation, we have the following optimization

zi = argmin
zi

(˜̄yi � zi)
T
⇥

T (⇥⇥T)�1
⇥(˜̄yi � zi). (31)

Next, we introduce sparse priors [19]. In Bayesian models, a prior density p(zi) is defined

as p(zi) =
QM

j=1
p(Z[j, i]). Then, we can look at the first iteration, which yields

zi = argmin
zi

�kzik`1 +
1

2
(˜̄yi � zi)

T
⇥

T (⇥⇥T)�1
⇥(˜̄yi � zi). (32)

One can get the orthogonal left null space matrix ⇥ = A
T
2
using singular value decomposi-

tion. Therefore, Eq. (32) can be rewritten as,

min
zi

�kzik`1 +
1

2
(˜̄yi � zi)

T
A2(A

T
2
A2)

�1
A

T
2
(˜̄yi � zi)

() min
zi

�kzik`1 +
1

2
(˜̄yi � zi)

T
A2A

T
2
(˜̄yi � zi). (33)

Note that our method includes the methods in [17] as special cases by setting the number

of iterations to 1.

Next, we illustrate the performance di↵erences between the second method in [17] and

the IHYDE on the Continuous Hysteresis Loop data, with 6% noise. For both methods,

28

500 samples are used for training. Our method consists of an iterative algorithm; we are

going to compare two scenarios. First, we set the number of iterations in our method

to 1, and carefully tune the hyperparameters for both algorithms in order to make a fair

comparison. Second, we set the number of iterations to 5 (which is a default setting for

IHYDE). Supplementary Table 1 shows the parameters and summarizes the identification

results.

It can be seen that both method with the number of iterations set to 1 e�ciently dis-

tinguish the number of subsystems. In theory, these two methods should have equivalent

performance. However, in practice, our present method identifies the sparse dynamics de-

scribing two subsystems; while the method in [17] does not. The reason for this could be

Eq. (28) of [17] optimizes over two variables zi, ⇠i. While our method in Eq. (32) optimizes

over one variable zi. Since these optimizations are solved by first-order optimization meth-

ods, such as variants of gradient descent, such searches are prone to stuck in local minimum

when there are a larger number of variables. More importantly, our method with 5 itera-

tions (default setup) accurately identifies the dynamics describing two subsystems, showing

an improved performance. In addition, the methods in [17] do not recover the transition

rules, while IHYDE does, as shown below.

Inferring Transition Logics

Once the subsystems have been identified, we can assign every input-output data point

(u(t),y(t)) to a specific subsystem as shown in Supplementary Figure 1. The next step is

to identify the transition logics between di↵erent subsystems. We first convert the problem

of identifying the transition logics to a standard sparse logistic regression problem which

can be e�ciently solved by many methods in the literature. The scheme is illustrated in

Supplementary Figure 2.

To proceed, we define ⌘i(t) as the set membership which equals to 1 only if the subsystem

i is active at discrete-time t or otherwise it equals to 0. The goal is to identify the transition

rules Ti!j between any subsystems i, j. These functions are known from the information in

the subsystem identification above. Define step(x), which equals 1 if x � 0, and 0 otherwise.

Mathematically, we are searching for a nonlinear function g, such that step(g(y(t),u(t)))

specifies the membership. Due to non-di↵erentiability of step functions at 0, we alternatively

29

relax the step function to a sigmoid function, i.e., ⌘j(t + 1) ⇡
1

1+e�g(y(t),u(t)) , where j is a

potential subsystem that we can jump to at time t+ 1. Assuming we are in subsystem i at

time t, the fitness function to jump to subsystem j at time t+ 1 is then

MX

t=1

⌘i(t)

����⌘j(t+ 1) �
1

1 + e�g(y(t),u(t))

����
2

`2

. (34)

To solve the optimization in (34), we can parameterize g(y(t),u(t)) as a linear combination

of over-determined dictionary matrix, i.e., g(y(t),u(t)) , (Y,u)[t, :]v, in which can

be constructed similarly as � in the previous section and v is a vector of to-be-discovered

parameters. The cost function only takes non-zero value when ⌘i(t) = 1. Let D , {t|⌘i(t) =

1, t = 1, · · · ,M}, then

MX

t=1

⌘i(t)

����⌘j(t+ 1) �
1

1 + e�g(y(t),u(t))

����
2

`2

=
X

t2D

����⌘j(t+ 1) �
1

1 + e� [t,:]v

����
2

`2

. (35)

After this transformation, the minimization of Eq. (35) is known as the logistic regression.

Hence, we can use standard gradient descent method to solve the logistic regression [20].

Similarly, we can also add an `1 regularizer in the optimization, i.e., we minimize the

following expression
X

t2D

����⌘j(t+ 1) �
1

1 + e� [t,:]v

����
2

`2

+ �kvk`1 , (36)

where � is a predefined parameter. There are many Matlab codes for sparse linear logistic

regression. Here, we adopt the implementation framework proposed in [16].

Algorithm 3 Transition Logics Identification Algorithm
1: Input: Input-output data y(t),u(t) and ⌘i(t), i = 1, 2 . . . , K and t = 1, 2, . . . , M

2: Output: Transition logics Ti!j(y(t),u(t)) for any pair i, j

3: for i = 1, . . . , K do

4: for j 6= i do

5: Construct the dictionary matrix from prior knowledge as described in the main text

6: The solution to the logistic regression in Eq. (36) gives the transition model for Ti!j

7: end for

8: end for

9: Return all transition logics mapping T

30

Principles for Parameter Tuning

We tune hyperparameters based on minimum error principle described below. For a set

of determined parameters �z,�w, ✏z, ✏w, we compute the fitting error for each subsystem on

test data points based on an Akaike information criterion (AIC) type algorithm given by

err = 2µ+ 2
nX

i=1

vuut
MX

r=1

min
j2{1,··· ,K}

(Ȳ[r, i] ��[r, :]wj
i)

2, (37)

where µ represents the number of non-zeros terms in all identified subsystems, and K rep-

resents the number of identified subsystems. To search for hyperparameters, we empirically

set an initial grid and search the optimal hyperparameters to minimize the AIC-type error.

The initial grid is divided into 210 combinations as follows:

�z 2 {10�7+m
|m = 1, 2, 3, 4, 5, 6, 7},

�w 2 {10�4+m
|m = 1, 2, 3},

✏z 2 {10�5+m
|m = 1, 2},

✏w 2 {0.001mkȲ[Itrain, i]k2|m = 1, 3, 5, 7, 9; i = 1, . . . , n}.

Next, we detail this test strategy and illustrate it on four examples. The data contains

4000 samples with 6% noise. Of those, 500 samples, denoted by Itrain = {1, 2, . . . , 500},

are used for training, and all the samples, denoted by Itest = {1, 2, . . . , 4000}, are used for

testing. Supplementary Table 2 summarizes the optimal hyperparameters and the identified

subsystems obtained from the proposed minimum error principle. These examples illustrate

that this initial grid and the minimum error principle can be useful for hyper-parameter

tuning. Indeed, the identified parameters of all subsystem are good approximations of the

true model. Note that, in general, this initial grid can be extended until the algorithm

achieves good performance with low residuals.

SUPPLEMENTARY FIGURES

31

Supplementary Figure 1. Schematics of the proposed subsystems identification algorithm. We

construct a library of nonlinear functions�. We formulate an iterative convex optimization method

to infer the number of subsystems and the underlying system models for every subsystem. More

specifically, we first identify a best model that fits the majority of data, then we remove the fitted

data and re-do the identification until no data are left.

Supplementary Figure 2. Illustration of the proposed Algorithm to identify transition logics. Using

the membership of every classified data point, we apply logistic regression to infer the logic between

every pair of identified subsystems, i.e., Ti!i0 for every i and i
0.

32

(a) (b)

(c) (d)

Supplementary Figure 3. The hybrid dynamical system model with the measured input-output u

and y. (a) Hysteresis Relay system. (b) Continuous Hysteresis Loop system. (c) Phototaxis Robot

system. (d) The nonlinear hybrid dynamical system.

Supplementary Figure 4. The position PI controller structure for the autonomous car.

33

Subsystem 1

Subsystem 2

Subsystem 3 Subsystem 4
�u(k) = P (v(k � 1) � v(k))

+P (vexpect2 � vexpect1)

+I(vexpect2 � v(k))

�u(k) = P (v(k � 1) � v(k))

+P (vexpect1 � vexpect2)

+I(vexpect1 � v(k))

�u(k) = P (v(k � 1)

�v(k)) + I(vexpect1

�v(k))

�u(k) = P (v(k � 1)

�v(k)) + I(vexpect2

�v(k))

Subsystem 1

Subsystem 2

Designed SystemImplemented System

straight(k) = 0

straight(k � 1) = 0

straight(k) = 0

straight(k � 1) = 1

straight(k) = 1

straight(k � 1) = 1

straight(k) = 1

straight(k � 1) = 0

straight(k) = 1

straight(k) = 0

�u(k) = P (v(k � 1)

�v(k)) + I(vexpect1

�v(k))

�u(k) = P (v(k � 1)

�v(k)) + I(vexpect2

�v(k))

Supplementary Figure 5. Left: a more complicated hybrid dynamical system model due to dis-

cretization and switching. Right: the correct hybrid dynamical system model that we would like

to design.

Supplementary Figure 6. The flow chart of the PI algorithm.

34

Supplementary Figure 7. The IHYDE pinpoints the implementation error that leads to a failure

in the autonomous car experiment. Left: the identified model from experimental data. Right: the

designed system. The two subsystems are swapped around due to a design bug.

Supplementary Figure 8. The experiment platform of Chua’s circuit built in the lab.

35

(a) (b)

(c) (d)

Supplementary Figure 9. Experiments of Chua’s circuit. (a) the circuit structure. (b) the current-

voltage characteristics of the nonlinear resistor. (c) the circuit structure of nonlinear resistor with

specified current-voltage realization. (d) The output trajectory associated with di↵erent colors

generated by di↵erent subsystems.

Gearbox
 Motor

Generator

Load

Power Supply
(380V)

Inverter

 Fan

Couplings

Couplings

Supplementary Figure 10. The corresponding schematic diagram of the wind turbine system plat-

form.

36

0 20 40 60 80
k

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

i

Supplementary Figure 11. The data fitting curve using data obtained from the wind turbine

platform using IHYDE. The original time-series data (lines connecting the dots) is plotted in

di↵erent colors associated with its subsystems. The fitted data from the identified models (dots),

and the detected time of the switching (changes in colors) are illustrated.

37

Substation

Feeder 1

1

2
19

3
23

20

21

2224

25

4

5

6

7

8

9

10

26

27

28

29

30

31

32

33

11

12
13

14

15

16

17

18

Feeder 2

Feeder 3

Feeder 4

Base configuration

Feeder 1

1

2
19

3
23

20

21

2224

25

4

5

6

7

8

9

10

26

27

28

29

30

31

32

33

11

12
13

14

15

16

17

18

Substation

Feeder 2

Feeder 3

Feeder 4

Changed configuration

ΔV10 < -0.05

ΔV21 < -0.05

Supplementary Figure 12. Subsystem models and transition logic of the smart grid example.

0 100 200 300 400 500 600

Time (ms)

-100

-80

-60

-40

-20

0

20

40

V
 (

m
V

)

Supplementary Figure 13. Model action potential V during stimulation at the frequency of 1 Hz.

38

100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8
subsystem

1

subsystem
2

100 150 200 250 300 350 400 450 500

time(ms)

0

0.2

0.4

0.6
subsystem

1

subsystem
2

Supplementary Figure 14. The value of gating variable x1 and x2. Di↵erent colors denote data

that are produced from di↵erent subsystems.

0 2 4 6 8 10
time (t)

0

0.5

1

y

Supplementary Figure 15. The observed output of Eq. (19) when a Dirac delta function is applied

to stimulate the system.

Subsystem 1 Subsystem 2

ẏ = �ay ẏ = �a(y � 30)

y  21

y � 19

Supplementary Figure 16. A counterexample of a constructed hybrid dynamical system that is not

able to be identified from data.

39

SUPPLEMENTARY TABLES

Supplementary Table 1. The identified results of method in [17] and IHYDE

Metrics # of Iterations=1 # of iterations=5

Method [17] IHYDE IHYDE

parameters
� = 0.015,

✏ = 0.1

�z = 0.015, ✏z = 0.25,

�w = 0.015, ✏w = 0.2

�z = 0.03, ✏z = 1e � 4,

�w = 0.008, ✏w = 0.1

Number

of Systems

2 2 2

Number of misclassified points 96 75 41

Dictionary 1 u u
2

u
3

u
4

u
5

Actual Subsystems 1 y = 0.5u
2 + u � 0.5

Identified

Subsystems 1

y = 1.0371u
5

� 0.1238u
4

�0.6507u
3 + 0.5462u

2

+1.0627u � 0.5005

y = 0.0753u
4 + 0.3866u

2

+1.0079u � 0.4844

y = 0.4841u
2

+0.9978u � 0.4984

Actual Subsystems 2 y = �0.5u
2 + u + 0.5

Identified

Subsystems 2

y = �0.6749u
5 + 0.2908u

4

+0.8616u
3

� 0.7386u
2

+0.8132u + 0.4322

y = �0.5417u
2

+1.0613u + 0.4829

y = �0.4806u
2

+0.9995u + 0.4882

40

Supplementary Table 2. The identified subsystems and the selected hyperparameters based on the

minimum error principle.

Data Set �z �w ✏z ✏w
Mode

(mk)
Actual subsystem

Identified

subsystem

Dictionary

Hysteresis

Relay

0.1 0.01 1e� 4 0.0224
1 y = 1 y = 1.0020 polynomials in u up

to 5
th

order
2 y = �1 y = �1.0014

Continuous

Hysteresis

Loop

0.1 0.1 1e� 4 0.1184

1

y = 0.5u2

+ u� 0.5

y = 0.4275u2
+

0.9954u� 0.4802
polynomials in u

up to 5
th

order

2

y = �0.5u2

+u+ 0.5

y = �0.5226u2
+

1.0190u+ 0.4999

Phototaxis

Robot

1e� 3 0.1 1e� 4 0.1619

1 y = u2 � u1

y = 0.9947u2 �

0.9947u1

1, u1 � u2,

1
u1�u2

, u2
1, u

2
2

2 y =
1

u1�u2
y =

0.9707
u1�u2

3 y = 0

y = 0.0062u1 �

0.0062u2

Nonlinear-

Hybrid-

System

1e� 4 0.01 1e� 4 1.2036

1 y = u1u2 y = 0.9951u1u2
u1+u2
u1�u2

, u1
6+u2

, u1u2,

u1, u2, sin(u1),

sin(u2), u2
1, u

2
2

2 y =
6u1
6+u2

y =
5.9567u1
6+u2

3 y =
u1+u2
u1�u2

y = 0.9958u1+u2
u1�u2

41

Supplementary Table 3. A summary of datasets used for IHYDE.

Data Set Modes Subsystem models

of

Points

Next

Mode

Transition logics No. of Transitions

Hysteresis Relay

1 y=1 1004 2 u > 0.5 33

2 y=-1 996 1 u < �0.5 32

Continuous

Hysteresis Loop

1 y = 0.5u2
+ u� 0.5 999 2 u > 0.98 21

2 y = �0.5u2
+ u+ 0.5 1001 1 u < �0.98 21

Phototaxis

Robot

1 y = u2 � u1 654

2 u4 = 1 10

3 u5 = 1 18

2 y =
1

u1�u2
585

1 u3 = 1 14

3 u5 = 1 11

3 y = 0 761

1 u3 = 1 15

2 u4 = 1 14

Nonlinear

Hybrid System

1 y = u1u2 605 3 u2
1 + u2

2 < 9 157

2 y =
6u1
6+u2

738 1 u2
1 + u2

2 > 25 158

3 y =
u1+u2
u1�u2

657 2 u1u2 < 0 157

Autonomous

Car

(experimental

data)

1

�u(k) = 9.5(380� v(k))

+48(v(k � 1)� v(k))
147 2 straight = 0 2

2

�u(k) = 9.5(280� v(k))

+48(v(k � 1)� v(k))
249 1 straight = 1 2

Chua’s Circuit

(experimental

data)

1

10
�5 dy1

dt = 1.0858y2

�0.2115y1 � 0.5349
57

2 y1 > �1.5 2

2

10
�5 dy1

dt = 1.0858y2

+0.1451y1
21

1 y1 < �1.5 2

3 y1 > 1.5 1

3

10
�5 dy1

dt = 1.0858y2

�0.1994y1 + 0.5168
99

2 y1 < 1.5 2

Wind turbine

(experimental data)

1 Normal 61 2 k > 67 1

2 Fault 3 0

Power Grid

Fault Detection

1 Normal 30 2 t > 30 1

2 Fault 10 1 0

Smart Grid

1 Topology1 180 2 �V10 < �0.05 3

2 Topology2 180 1 �V21 < �0.05 2

Human Atrial Action

Potential Models

1 Normal 707 2 V < �40 1

2 Disease 560 1 0

42

Supplementary Table 4. The detailed information of Hysteresis Relay data.

Original data points 2000

Sampling rate 1

Used data points 2000

Number of points (subsystem 1) 1004

Number of points (subsystem 2) 996

Number of transitions (S1 to S2) 33

Number of transitions (S2 to S1) 32

Supplementary Table 5. The identified result and details of Hysteresis Relay.

Noise Np = 0 Np = 2% Np = 4% Np = 6%

Library � 1

Identified subsystem 1 y = 0.9999 y = 1.0013 y = 1.0027 y = 1.0040

Identified subsystem 2 y = �0.9999 y = �1.0004 y = �1.0009 y = �1.0014

�z 1e � 3

✏z 1e � 4

�w 0.05

✏w 0.2

Number of

misclassified points

0

43

Supplementary Table 6. The identified result and details of Hysteresis Relay with redundant

dictionary functions.

Noise Np = 0 Np = 2% Np = 4% Np = 6%

Library � 1 u u
2

u
3

u
4

u
5

Identified subsystem 1 y = 0.9999 y = 1.0013 y = 1.0027 y = 1.0038

Identified subsystem 2 y = �0.9999 y = �1.0004 y = �1.0009 y = �1.0014

�z 1e � 3

✏z 1e � 4

�w 0.05

✏w 0.2

Number of

misclassified points

0

Supplementary Table 7. The identified transition logics of Hysteresis Relay.

Systems Subsystem 1 Subsystem 2

Subsystem 1 u > 0.4995

Subsystem 2 u < �0.4987

Library 1 u

� 0.1

44

Supplementary Table 8. The identified transition logics of Hysteresis Relay when existing redun-

dant dictionary functions.

Systems Subsystem 1 Subsystem 2

Subsystem 1 u > 0.4995

Subsystem 2 u < �0.4987

Library 1 u e
(10(sin(u2

))+10) log(|u|)
sin(u) u

2
u
4

� 0.1

Supplementary Table 9. The detailed information of Continuous Hysteresis Loop data.

Original data points 2000

Sampling rate 1

Used data points 2000

Number of points (subsystem 1) 999

Number of points (subsystem 2) 1001

Number of transitions (S1 to S2) 21

Number of transitions (S2 to S1) 21

45

Supplementary Table 10. The identified systems of Continuous Hysteresis Loop for both noiseless

and noisy datasets. We also present the tuning parameters for di↵erent noise levels.

Noise Np = 0 Np = 2% Np = 4% Np = 6%

Library � polynomials in u up to second order

Identified

subsystem 1

y = 0.4998u
2

+1.0000u

�0.4999

y = 0.4989u
2

+1.0003u

�0.4996

y = 0.4920u
2

+0.9999u

�0.4982

y = 0.4842u
2

+0.9980u

�0.4961

Identified

subsystem 2

y = �0.5042u
2

+1.0021u

+0.5008

y = �0.5072u
2

+1.0031u

+0.5015

y = �0.5172u
2

+1.0055u

+0.5032

y = �0.5133u
2

+0.9966u

+0.5027

�z 0.005 0.005 0.008 0.03

✏z 1e � 4

�w 0.005 0.001 0.005 0.008

✏w 0.04 0.04 0.08 0.105

Number of

misclassified points
0 17 45 88

46

Supplementary Table 11. The identified result and details of Continuous Hysteresis Loop with

redundant dictionary functions.

Noise Np = 0 Np = 2% Np = 4% Np = 6%

Library � 1 u u
2

e
�u u3

eu
cos(2u)
sin(u)3

Identified

subsystem 1

y = 0.4999u
2

+1.0000u

�0.4999

y = 0.5001u
2

+1.0001u

�0.4998

y = 0.4919u
2

+0.9995u

�0.4979

y = 0.4811u
2

+0.9994u

�0.4956

Identified

subsystem 2

y = �0.5010u
2

+0.9995u

+0.5002

y = �0.4979u
2

+0.9990u

+0.5001

y = �0.5123u
2

+1.0000u

+0.5034

y = �0.5275u
2

+0.9999u

+0.5047

�z 0.005 0.005 0.008 0.03

✏z 1e � 4

�w 0.005 0.001 0.005 0.008

✏w 0.04 0.04 0.08 0.105

Number of

misclassified points
0 11 45 94

Supplementary Table 12. The identified transition logics of the Continuous Hysteresis Loop without

redundant dictionary functions using noiseless data.

System Subsystem 1 Subsystem 2

Subsystem 1 u > 0.9803

Subsystem 2 u < �0.9799

Library 1 u

� 10

47

Supplementary Table 13. The identified transition logics of the Continuous Hysteresis Loop with

noiseless data and redundant dictionary functions.

System Subsystem 1 Subsystem 2

Subsystem 1 u > 0.9803

Subsystem 2 u < �0.9799

Library 1 u
1

u2
cosu
sinu3

� 10

Supplementary Table 14. The detailed information of Phototaxis Robot data.

Original data points 2000

Sampling rate 1

Used data points 2000

Number of points (subsystem 1) 654

Number of points (subsystem 2) 585

Number of points (subsystem 3) 761

Supplementary Table 15. The transition distribution for Phototaxis Robot example.

System Subsystem 1 Subsystem 2 Subsystem 3

Subsystem 1 14 15

Subsystem 2 10 14

Subsystem 3 18 11

48

Supplementary Table 16. The identified result and details of tuning parameters in the Phototaxis

Robot example without reduntant dictionary functions.

Noise Np = 0 Np = 2% Np = 4% Np = 6%

Library � u1 � u2
1

u1�u2

Identified

subsystem 1

y = �0.9980

(u1 � u2)

y = �0.9978

(u1 � u2)

y = �0.9964

(u1 � u2)

y = �0.9955

(u1 � u2)

Identified

subsystem 2
y = 0.9908

u1�u2
y = 0.9947

u1�u2
y = 0.9820

u1�u2
y = 0.9821

u1�u2

Identified

subsystem 3
y = 0 y = 0 y = 0.0068(u1 � u2) y = 0.0095(u1 � u2)

�z 5e � 4 5e � 4 5e � 4 0.001

✏z 1e � 4

�w 0.05 0.05 0.1 0.1

✏w 0.05 0.06 0.2 0.2

Number of

misclassified points
0 11 28 47

49

Supplementary Table 17. The identified result and details of tuning parameters in the Phototaxis

Robot example with redundant dictionary functions.

Noise Np = 0 Np = 2% Np = 4% Np = 6%

Library � 1 u1 � u2
1

u1�u2
u
2

1
u
2

2

Identified

subsystem 1

y = �1.0000

(u1 � u2)

y = �0.9957

(u1 � u2)

y = �0.9944

(u1 � u2)

y = �0.9941

(u1 � u2)

Identified

subsystem 2
y = 0.9998

u1�u2
y = 0.9891

u1�u2
y = 0.9727

u1�u2
y = 0.9689

u1�u2

Identified

subsystem 3
y = 0 y = �0.0002u

2

2

y = 0.0046(u1

�u2) + 0.0014u
2

1

y = 0.0064(u1

�u2) + 0.0019u
2

1

�z 1e � 4 1e � 4 5e � 4 1e � 3

✏z 1e � 4

�w 1e � 3 0.1 0.15 0.15

✏w 0.005 0.06 0.2 0.2

Number of

misclassified points
0 11 28 48

Supplementary Table 18. The identified result and details of tuning parameters in the Phototaxis

Robot example.

System Subsystem 1 Subsystem 2 Subsystem 3

Subsystem 1 u3 < 0.4986u4 u3 < 0.5085u5

Subsystem 2 u4 < 0.4553u3 u4 < 0.5055u5

Subsystem 3 u5 < 0.5242u3 u5 < 0.4543u4

Library 1 u3 u4 u5

� 0.5

50

Supplementary Table 19. The identified transition logics for the Phototaxis Robot example.

System Subsystem 1 Subsystem 2 Subsystem 3

Subsystem 1 u3 < 0.4986u4 u3 < 0.5085u5

Subsystem 2 u4 < 0.4553u3 u4 < 0.5055u5

Subsystem 3 u5 < 0.5242u3 u5 < 0.4543u4

Library 1 u
�1

1
u2 sin(u1) cos(u2) e

u1u2 u3 u4 u5

� 0.5

Supplementary Table 20. The detailed information of Nonlinear Hybrid System data.

Original data points 2000

Sampling rate 1

Used data points 2000

Number of points (subsystem 1) 605

Number of points (subsystem 2) 738

Number of points (subsystem 3) 657

51

Supplementary Table 21. The transition distribution for Nonlinear Hybrid System example.

System Subsystem 1 Subsystem 2 Subsystem 3

Subsystem 1 157

Subsystem 2 158

Subsystem 3 157

Supplementary Table 22. The identified result and details of Nonlinear Hybrid System.

Noise Np = 0 Np = 2% Np = 4% Np = 6%

Library � u1u2
6u1
6+u2

u1+u2
u1�u2

Identified subsystem 1 y = 0.9998u1u2 y = 0.9958u1u2 y = 0.9962u1u2 y = 0.9953u1u2

Identified subsystem 2 y = 0.9983 6u1
6+u2

y = 0.9961 6u1
6+u2

y = 0.9947 6u1
6+u2

y = 0.9939 6u1
6+u2

Identified subsystem 3 y = 0.9990u1+u2
u1�u2

y = 0.9945u1+u2
u1�u2

y = 0.9901u1+u2
u1�u2

y = 0.9949u1+u2
u1�u2

�z 1e � 6 1.5e � 4 1.5e � 4 1.5e � 4

✏z 1e � 4

�w 0.03

✏w 0.6 2 2 2

Number of

misclassified points
0 63 129 177

52

Supplementary Table 23. The identified result and details of Nonlinear Hybrid Systems when there

exists redundant dictionary functions.

Noise Np = 0 Np = 2% Np = 4% Np = 6%

Library � u1u2
6u1
6+u2

u1+u2
u1�u2

u1 u2 sin(u1) sin(u2) u
2

1
u
2

2

Identified subsystem 1 y = 0.9997u1u2 y = 0.9999u1u2 y = 0.9944u1u2 y = 0.9953u1u2

Identified subsystem 2 y = 0.9983 6u1
6+u2

y = 0.9960 6u1
6+u2

y = 0.9960 6u1
6+u2

y = 0.9963 6u1
6+u2

Identified subsystem 3 y = 0.9990u1+u2
u1�u2

y = 0.9975u1+u2
u1�u2

y = 0.9898u1+u2
u1�u2

y = 0.9877u1+u2
u1�u2

�z 1e � 5 5e � 5 1.5e � 4 1.5e � 4

✏z 1e � 4

�w 0.03 0.03 0.032 0.0282

✏w 0.6 0.8 2 2

Number of

misclassified points
0 67 129 175

Supplementary Table 24. The identified transition logics of Nonlinear Hybrid System.

System Subsystem 1 Subsystem 2 Subsystem 3

Subsystem 1 u
2

1
+ u

2

2
< 8.9993

Subsystem 2 u
2

1
+ u

2

2
> 24.9803

Subsystem 3 u1u2 < �0.013

Library 1 u1u2 u
2

1
+ u

2

2

� 0.01

53

Supplementary Table 25. The identified transition logics of Nonlinear Hybrid System when there

are redundant dictionary functions.

System Subsystem 1 Subsystem 2 Subsystem 3

Subsystem 1
34.6143u

2

1
+ 35.8259u

2

2

< 316.4377

Subsystem 2
11.8852u

2

1
+ 11.8905u

2

2

> 296.5977

Subsystem 3 u1u2 < �0.013

Library 1 u1 u2 e
u1+u2 u1u2 u

2

1
u
2

2

� 0.01

Supplementary Table 26. The detailed information of experiment data from autonomous car ex-

ample.

Original data points 400

Used data points 396

Number of points (Straightway) 147

Number of points (curve) 249

Number of transitions (straightway to curve) 2

Number of transitions (curve to straightway) 2

Supplementary Table 27. The identified transition logics of autonomous car testbed.

System Straightaway Curve

Straightaway straight < 0.3318

Curve straight > 0.6072

Library 1 straight sin(v(k)) cos(v(k)) tan(v(k)) v(k�1)�v(k�4)

v(k�2)
v(k � 1) tan(v(k � 3))

� 0.001

54

Supplementary Table 28. The identified result and details of autonomous car testbed.

Library � 1 v(k) v(k � 1)

Speed control strategy Straightaway Curve

True strategy
�u(k) = 9.5(380 � v(k))

+48(v(k � 1) � v(k))

�u(k) = 9.5(280 � v(k))

+48(v(k � 1) � v(k))

True times 147 249

Identified

strategy

�u(k) = 9.4957(379.9550 � v(k))

+47.9742(v(k � 1) � v(k))

�u(k) = 9.4960(279.9462 � v(k))

+47.9888(v(k � 1) � v(k))

Identified

switching times
147 249

�z 0.01

✏z 100

�w 1e � 5

✏w 8

55

Supplementary Table 29. The identified result and details of autonomous car testbed with redun-

dant dictionary functions.

Library � all the polynomial combinations of v(k), . . . , v(k � 4) to fourth order

Speed control strategy Straightaway Curve

True strategy
�u(k) = 9.5(380 � v(k))

+48(v(k � 1) � v(k))

�u(k) = 9.5(280 � v(k))

+48(v(k � 1) � v(k))

True times 147 249

Identified strategy
�u(k) = 9.4957(379.9554 � v(k))

+47.9741v(k � 1) � v(k))

�u(k) = 9.4959(279.9465 � v(k))

+47.9888(v(k � 1) � v(k))

Identified

switching times
147 249

�z 0.01

✏z 100

�w 1e � 5

✏w 8

Supplementary Table 30. The detailed information of experiment data from Chua’s circuit.

Original data points 120000

Sampling rate 5 ⇥ 106Hz

Down sampling 1:50:120000

Used data points 177

Number of points (subsystem 1) 57

Number of points (subsystem 2) 21

Number of points (subsystem 3) 99

56

Supplementary Table 31. The transition distribution of experiment data from Chua’s circuit.

System Subsystem 1 Subsystem 2 Subsystem 3

Subsystem 1 2

Subsystem 2 2 1

Subsystem 3 2

Supplementary Table 32. True parameters of the built Chua’s circuit.

Item Value Item Value

a �1.2309e � 3 c1 0.01µF

b �8.743e � 4 c2 0.1µF

b
0

�8.864e � 4 dt 10�5
s

⌧ 1.5 L 6.8mH

R 921 E 1.5V

57

Supplementary Table 33. The identified subsystems and transition logics of Chua’s circuit which

contains all subsystems with redundant dictionary functions.

Library � 1 y1 y2 e
y1 y1

y2
cos(0.1y1)2

1+y22
cos(y1 + y2)2

Identified subsystems

10�5 dy1
dt = 1.0758y2 � 0.2028y1 � 0.5405 y1 < �1.4348

10�5 dy1
dt = 1.0793y2 + 0.1576y1 � 1.5627 < y1 < 1.3137

10�5 dy1
dt = 1.0869y2 � 0.2127y1 + 0.4859 y1 > 1.4627

�z 0.05

✏z 0.012

�w 0.01

✏w 0.044

Library 1 y1 y2 sin(y2) cos(y1)
dy1
dt

sin(y1)+
dy1
dt

dy1
dt
y2

dy1
dt

� 0.01

Supplementary Table 34. The detailed information of experiment data from wind turbine system

platform.

Original data points 20701

Sampling rate 1000Hz

Down sampling 1:300:20701

Used data points 64

Number of points (normal) 61

Number of points (fault) 3

Number of transitions 1

58

Supplementary Table 35. The identified result and details of the gearbox broken tooth fault

detection with redundant dictionary functions.

System Gearbox

True fault time 68

Identified fault time 68

�z 1.5

✏z 1e � 4

�w 5e � 5

✏w 0.026

Library �
all the polynomial combinations

of y(k) · · · y(k � 5) to second order

Number of misclassified points 0

Library 1 k

� 0.1

Supplementary Table 36. The detailed information of data sampled during power system line fault

detection.

Original data points 40

Used data points 40

Number of points (normal) 30

Number of points (fault) 10

Normal to fault 1

59

Supplementary Table 37. The identified result and details of power system fault detection.

Bus Bus 6 and bus 12 Other bus except bus 1 Bus 1

True time for fault occurance 31 None None

Identified time for fault occurance 31 None None

�z 1e � 3 1e � 3 1e � 3

✏z 0.008 0.008 0.008

�w 1e � 6 1e � 6 1e � 9

✏w 0.05 0.05 0.05

Library 1 t

� 0.01 None None

60

Supplementary Table 38. The detailed information of smart gird data.

Original data points 180

Used data points 180

Number of points (subsystem 1) 90

Number of points (subsystem 2) 90

Number of transitions (S1 to S2) 3

Number of transitions (S2 to S1) 2

Supplementary Table 39. The detailed parameters of switch operators.

Transition rules Time Opened switch Closed switch Bus of load change

T1!2 31, 91, 151 11 � 12 12 � 22 9, 10, 11

T2!1 61, 121 12 � 22 11 � 12 20, 21, 22

61

Supplementary Table 40. The identified result and detailed parameters.

System model Subsystem 1 Subsystem 2

True switching time 31, 91, 151 61, 121

Identified switching time 31, 91, 151 61, 121

�z 5e � 3

✏z 1.5e � 2

�w 1e � 6

✏w 5e � 2

Number of misclassified points 0

Supplementary Table 41. The identified transition logics for the model switching in smart grid.

System Subsystem 1 Subsystem 2

Subsystem 1 �V10 < �0.0499

Subsystem 2 �V21 < �0.0472

Library 1 �V1 · · ·�V33

� 5.8e � 5

Supplementary Table 42. The detailed information of data sampled from AP model.

Original data points 120001

Sampling rate 200Hz

Down sampling 24000:60:100000

Used data points 1267

Number of points (subsystem 1) 707

Number of points (subsystem 2) 560

Number of transitions (S1 to S2) 1

62

Supplementary Table 43. The identified results and detailed parameters of AP model.

Gating

variable

x1
x2

Actual

subsystem 1
ẋ1 = �⇢12x1 ẋ2 = �0.3x2

exp(�2.535⇥10
�7V)

1+exp[�0.1(V+32)]

Actual

subsystem 2

ẋ1 = 0.135 exp(�V+80

6.8) �

0.135x1 exp(�V+80

6.8) � ⇢11x1

ẋ2 = ↵21 � ↵21x2 �

0.1212x2

exp(�0.01052V)

1+exp[�0.1378(V+40.14)]

Actual change

time
332.10 ms 332.10 ms

Identified

subsystem 1
ẋ1 = �0.9999⇢12x1 ẋ2 = �0.3000x2

exp(�2.535⇥10
�7V)

1+exp[�0.1(V+32)]

Identified

subsystem 2

ẋ1 = 0.1349 exp(�V+80

6.8) �

0.1349 exp(�V+80

6.8)x1 �

0.9987⇢11x1

ẋ2 = 1.0000↵21 � 1.0000↵21x2 �

0.1212x2

exp(�0.01052V)

1+exp[�0.1378(V+40.14)]

Identified

change time
332.10 ms 332.10 ms

�z 1e-4 1e-4

✏z 3e-5 3e-5

�w 3e-5 1e-5

✏w 5e-5 5e-5

Library � exp(�V+80

6.8) exp(�V+80

6.8)x1

⇢11x1 ⇢12x1

↵21 ↵21x2 x2

exp(�0.01052V)

1+exp[�0.1378(V+40.14)]

x2

exp(�2.535⇥10
�7V)

1+exp[�0.1(V+32)]

Number of

misclassified

points

0 0

63

Supplementary Table 44. The identified transition logics for gating variable x1.

gating variable x1 Subsystem 1 Subsystem 2

Subsystem 1 V < �40.0093

Library 1 V

� 1e-6

Supplementary Table 45. The identified transition logics for gating variable x2.

gating variable x2 Subsystem 1 Subsystem 2

Subsystem 1 V < �40.0093

Library 1 V

� 1e-6

64

Supplementary Table 46. The detailed parameters and identified results of AP model with poly-

nomial dictionary functions.

Gating variable x1 x2

Actual subsystem

1
ẋ1 = �⇢12x1 ẋ2 = �0.3x2

exp(�2.535⇥10
�7V)

1+exp[�0.1(V+32)]

Actual subsystem

2

ẋ1 = 0.135 exp(�V+80

6.8) �

0.135x1 exp(�V+80

6.8) � ⇢11x1

ẋ2 = ↵21 � x2↵21 �

0.1212x2

exp(�0.01052V)

1+exp[�0.1378(V+40.14)]

Actual change

time
332.10 ms 332.10 ms

Identified

subsystem 1

ẋ1 = 0.0006 � 0.0003V �

2.1791x1 � 0.0608x1V �

0.2323V
2
� 0.0004x1V

2
�

0.0032x
2

1
V � 0.0256V

3

ẋ2 = 0.0610x2 � 0.0218x
2

2

Identified

subsystem 2

ẋ1 = �1.0506x
2

1
+ 0.0762x1V �

5.9332 ⇥ 1032x3

1
� 0.0033x1V

2 +

3.9061⇥1031x2

1
V +7.9368⇥1064x3

1

ẋ2 = �0.2525x2 + 0.0003x
3

2

Identified change

time
331.80 ms 331.80 ms

�z 1e-4 1e-5

✏z 3e-5 3e-5

�w 3e-8 1e-4

✏w 5e-5 5e-5

Library �
polynomials of V, x1 up to third

order

polynomials of V, x2 up to third

order

Number of

misclassified

points

1 1

65

Supplementary Table 47. The details of simulation datasets in [13].

Systems Form
Data used to train [13] Data used to train IHYDE

time points time points

Linear 2D d
dt

2

664
x

y

3

775 =

2

664
�0.1 2

�2 �0.1

3

775

2

664
x

y

3

775 t 2 [0, 25] 2501 t 2 [0, 10] 1001

Cubic 2D d
dt

2

664
x

y

3

775 =

2

664
�0.1 2

�2 �0.1

3

775

2

664
x
3

y
3

3

775 t 2 [0, 25] 2501 t 2 [0, 10] 1001

Linear 3D d
dt

2

66666664

x

y

z

3

77777775

=

2

66666664

�0.1 2 0

�2 �0.1 0

0 0 �0.3

3

77777775

2

66666664

x

y

z

3

77777775
t 2 [0, 50] 5001 t 2 [0, 10] 1001

Logistic map
xk+1 = µkxk(1 � xk)

µk+1 = µk

9990 990

Lorenz system

ẋ = 10y � 10x

ẏ = 28x � xz � y

ż = xy � 2.6667z

t 2 [0.001, 100] 100000 t 2 [0.01, 10] 1000

Lorenz TVDi↵

ẋ = 10y � 10x

ẏ = 28x � xz � y

ż = xy � 2.6667z

t 2 [0.001, 50] 48002
t 2 [0.001, 50]

downsampling=25

1921

Hopf TVDi↵

ẋ = ux � y � x
3

� xy
2

ẏ = x + uy � yx
2

� y
3

u̇ = 0

399014 downsampling=100 3991

66

Supplementary Table 48. The identified results using datasets in [13]. Seven prototypical systems

are examined, IHYDE successfully discovers all of them. We highlight the number of data points

required is much less than [13] shown in Supplementary Figure 47.

Identified systems by [13] Identified systems by IHYDE

Linear 2D d
dt

2

664
x

y

3

775 =

2

664
�0.1015 2.0027

�1.9990 �0.0994

3

775

2

664
x

y

3

775
d
dt

2

664
x

y

3

775 =

2

664
�0.0993 2.0054

�2.0004 �0.1048

3

775

2

664
x

y

3

775

Cubic 2D d
dt

2

664
x

y

3

775 =

2

664
�0.0996 1.9970

�1.9994 �0.0979

3

775

2

664
x
3

y
3

3

775
d
dt

2

664
x

y

3

775 =

2

664
�0.1015 2.0005

�2.0010 �0.1002

3

775

2

664
x
3

y
3

3

775

Linear 3D d
dt

2

66664

x

y

z

3

77775
=

2

66664

�0.0996 2.0005 0

�1.9997 �0.0994 0

0 0 �0.3003

3

77775

2

66664

x

y

z

3

77775
d
dt

2

66664

x

y

z

3

77775
=

2

66664

�0.0992 2.0002 0

�1.9999 �0.0991 0

0 0 �0.2983

3

77775

2

66664

x

y

z

3

77775

Logistic map
xk+1 = µkxk(0.9993 � 0.9989xk)

µk+1 = 1.0000µk

xk+1 = µkxk(1.0005 � 1.0006xk)

µk+1 = 1.0000µk

Lorenz system

ẋ = 9.9998y � 9.9996x

ẏ = 27.9980x � 0.9999xz � 0.9997y

ż = 1.0000xy � 2.6665z

ẋ = 10.0060y � 9.9968x

ẏ = 27.9480x � 0.9957xz � 0.9954y

ż = 1.0010xy � 2.6673z

Lorenz TVDi↵

ẋ = 9.9999y � 9.9856x

ẏ = 27.7382x � 0.9949xz � 0.8763y

ż = 1.0000xy � 2.6618z

ẋ = 10.0087y � 10.0227x

ẏ = 27.6620x � 0.9934xz � 0.8461y

ż = 0.9993xy � 2.6640z

Hopf TVDi↵

ẋ = 0.9269ux � 0.9920y � 0.9208x
3

�0.9211xy
2

ẏ = 0.9914x + 0.9294uy � 0.9244yx
2

�0.9252y
3

u̇ = 0

ẋ = 0.9193ux � 0.9921y � 0.9109x
3

�0.9179xy
2

ẏ = 0.9911x + 0.9164uy � 0.9127yx
2

�0.9130y
3

u̇ = 0

67

Supplementary Table 49. The tuning parameters are presented for these prototypical examples.

Noise �z ✏z �w ✏w

Linear 2D 0.05 1 1e � 4 2e � 3 0.2

Cubic 2D 0.05 1 1e � 4 2e � 3 0.2

Linear 3D 0.01 1 1e � 4 2e � 3 0.05

Logistic map 0.01 1 1e � 4 2e � 3 0.05

Lorenz system 1 1 1e � 4 1e � 3 4

Lorenz TVDi↵ 0.01 1 1e � 4 4e � 3 3

Hopf TVDi↵ 0.005 1 1e � 4 3e � 3 0.1

Supplementary Table 50. The selected hyperparameters and the identified subsystems for discus-

sions in the choice of canonical dictionary functions.

Library � polynomials of x up to fifth order

Actual subsystem 1 ẋ = �x
3

Identified subsystem 1 ẋ = �0.9975x
3

Actual subsystem 2 ẋ = � cos(x)

Identified subsystem 2 ẋ = �0.9960 + 0.4651x
2

�z 1e � 6

✏z 1e � 2

�w 1e � 4

✏w 0.1826

68

Supplementary Table 51. Directories in the IHYDE toolbox.

Directories Description

/CPSid main functions and examples

/CPSid/data the used data sets

/CPSid/tools functions for IHYDE

/CPSid/EX-grid-search examples of grid search

/CPSid/EX-nonhybrid examples of nonhybrid systems

/CPSid/SLR dev functions for sparse logistic regression

/CPSid/comparison comparison with reference [17]

Supplementary Table 52. The introduction of function library which constructs dictionary matrix

for identification.

Function library Description

yin
an M by n matrix which contains time-course input-output data.

In here, M is the sample number, and n is the number of variables.

memory the historical data (previous memory time instants) is used in yin.

polyorder used to construct the polynomial of the highest order (up to fifth order).

basis function
add more dictionary functions. It can be turned o↵,

if basis function.work set as ’o↵’.

yout constructed dictionary matrix �.

69

Supplementary Table 53. The introduction of function ihyde. The ihyde can be used to identify

each subsystem.

Function ihyde Description

parameter.y the output data.

parameter.normalize y set to 1 if y need to be normalized.

parameter.max s the max number of subsystems that could be identified by IHYDE.

parameter.epsilon a 2-dimensional parameter vector [✏z, ✏w].

parameter.lambda a 2-dimensional parameter vector [�z, �w].

parameter.Phi the constructed matrix �.

parameter.MAXITER the max number of iterations that the sparsesolver function solves.

result. idx sys the index of each subsystem.

result.sys the model of each subsystem.

result.theta z of each identified subsystem.

result.error the fitting error.

70

Supplementary Table 54. The introduction of function finetuning. Based on the minimum error

principle, it finetunes the result from ihyde and outputs the final result.

Function finetuning Description

result.lambda
the trading-o↵ parameter � of the sparsesolver function.

Parameter.lamdba(2) is set as the default value.

result.epsilon the threshold in finetuning. Parameter.epsilon(2) is set as the default value.

result.threshold the threshold for subsystem clustering.

final result.idx the index of each subsystem.

final result.sys the model of each subsystem.

final result.allerror the error which compared with the true output.

71

Supplementary Table 55. The introduction of function ihydelogic.

Function ihydelogic Description

para log.Phi2 constructed dictionary matrix for inferring transition logics of each subsystem.

para log.idx sys the index of each subsystem.

para log.beta the tradeo↵ parameter in the `1 regularized sparse logistic regression.

para log.y the output data.

para log.normalize set to 1 if need to be normalized.

SUPPLEMENTARY REFERENCES

[1] Lygeros, J., Tomlin, C. & Sastry, S. Hybrid Systems: Modeling, Analysis and Control (UC

Berkeley / ETH Zurich lecture notes, 2008).

[2] Ljung, L. System identification: theory for the user (PTR Prentice Hall, Upper Saddle River,

NJ 1999).

[3] Ly, D. L. & Lipson, H. Learning symbolic representations of hybrid dynamical systems. J.

Mach. Learn. Res. 13, 3585-3618 (2012).

[4] Reger, B. D., Fleming, K. M., Sanguineti, V., Alford, S. & Mussa-Ivaldi, F. A. Connecting

brains to robots: an artificial body for studying the computational properties of neural tissues.

Artif. Life 6, 307 (2000).

[5] He, Q., Guo, Y., Wang, X., Ren, Z. & Li, J. Gearbox fault diagnosis based on RB-SSD and

MCKD. China Mechanical Engineering 28, 1528-1534 (2017).

[6] Hameed, Z., Hong, T. & Cho, Y. Condition monitoring and fault detection of wind turbines

and related algorithms. Renew. Sust. Energ. Rev. 13, 1-39 (2009).

[7] Yuan, Y. et al. Artificial intelligent diagnosis and monitoring in manufacturing. Preprint at

https://arxiv.org/abs/1901.02057 (2019).

[8] Fang, X., Misra, S., Xue, G. & Yang, D. Smart grid the new and improved power grid: A

survey. IEEE Commun. Surv. Tutor. 14, 944-980 (2012).

72

[9] Jabr, R. Minimum loss operation of distribution networks with photovoltaic generation. IET

Renew. Power Gener. 8, 33-44 (2014).

[10] Baran, M. & Wu, F. Network reconfiguration in distribution systems for loss reduction and

load balancing. IEEE Trans. Power Deliv. 4, 1401-1407 (1989).

[11] Zimmerman, R., Murillo-Sanchez, C. & Thomas, R. MATPOWER: Steady-State Operations,

Planning, and Analysis Tools for Power Systems Research and Education. IEEE Trans. Power

Syst. 26, 12-19 (2011).

[12] Courtemanche, M., Ramirez, R. & Nattel, S. Ionic mechanisms underlying human atrial ac-

tion potential properties: insights from a mathematical model. Am. J. Physiol.-Heart Circul.

Physiol. 275, 301-321 (1998).

[13] Brunton, S. L., Proctor, J. L. & Kutz, J. N. Discovering governing equations from data by

sparse identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci. USA 113, 3932-

3937 (2016).

[14] Pan, W., Yuan, Y., Goncalves, J. & Stan, G. B. Reconstruction of arbitrary biochemical reac-

tion networks: A compressive sensing approach. In Proceedings of the 51st IEEE Conference

on Decision and Control, 2334-2339 (2012).

[15] Grant, M. & Boyd, S. CVX: Matlab software for disciplined convex programming, version 2.0

beta. http://cvxr.com/cvx (2013).

[16] Yamashita, O., Sato, M. A., Yoshioka, T., Tong, F. & Kamitani, Y. Sparse estimation auto-

matically selects voxels relevant for the decoding of fmri activity patterns. Neuroimage 42,

1414-1429 (2008).

[17] Bako, L. Identification of switched linear systems via sparse optimization. Automatica 47,

668-677 (2011).

[18] Wipf, D. P., Rao, B. D. & Nagarajan, S. Latent variable Bayesian models for promoting

sparsity. IEEE Trans. Inf. Theory 57, 6236-6255 (2011).

[19] Wipf, D. P. & Rao, B. D. Sparse Bayesian learning for basis selection. IEEE Trans. Signal

Process. 52, 2153-2164 (2004).

[20] Murphy, K.P. Machine learning: A probabilistic perspective (MIT Press, 2012).

73

