10,795 research outputs found

    An optimization-based "phase field" model for polycrystalline ferroelectrics

    Get PDF
    An optimization-based computational model is proposed to study domain evolution in polycrystalline ferroelectrics composed of numerous grains, each of which consists of multiple domains. Domain switching is realized by an optimization process to minimize the free energy of each grain. Similar to phase field modeling, no priori domain-switching criterion is imposed in the proposed model. Moreover, by focusing on the volume fractions of domains only, the computational complexity of this model becomes much smaller and the domain textures evolution can be captured. Simulation results on both tetragonal and rhombohedral lead titanate zirconate ceramics illustrate the efficiency of this model. © 2010 American Institute of Physics.published_or_final_versio

    The stellar metallicity distribution in intermediate latitude fields with BATC and SDSS data

    Full text link
    Based on the Beijing-Arizona-Taiwan-Connecticut (BATC) and Sloan Digital Sky Survey (SDSS) photometric data, we adopt SEDs fitting Method to evaluate the metallicity distribution for \sim40,000 main-sequence stars in the Galaxy. According to the derived photometric metallicities of these sample stars, we find that the metallicity distribution shift from metal-rich to metal-poor with the increase of distance from the Galactic center. The mean metallicity is about of 1.5 \pm 0.2dex in the outer halo and 1.3 \pm 0.1 dex in the inner halo. The mean metallicity smoothly decreases from -0.4 to -0.8 in interval 0 < r \leq 5 kpc. The fluctuation in the mean metallicity with Galactic longitude can be found in interval 4 < r \leq 8 kpc. There is a vertical abundance gradients d[Fe/H]/dz\sim -0.21 \pm 0.05 dex kpc-1 for the thin disk (z \leq 2 kpc). At distance 2 < z \leq 5 kpc, where the thick disk stars are dominated, the gradients are about of -0.16 \pm0.06 dex kpc-1, it can be interpreted as a mixture of stellar population with different mean metallicities at all z levels. The vertical metallicity gradient is - 0.05 \pm0.04 dex kpc-1 for the halo (z > 5 kpc). So there is little or no metallicity gradient in the halo

    Large Scale Reasoning Using Allen's Interval Algebra

    Get PDF
    This paper proposes and evaluates a distributed, parallel approach for reasoning over large scale datasets using Allen's Interval Algebra (IA). We have developed and implemented algorithms that reason over IA networks using the Spark distributed processing framework. Experiments have been conducted by deploying the algorithms on computer clusters using synthetic datasets with various characteristics. We show that reasoning over datasets consisting of millions of interval relations is feasible and that our implementation scales effectively. The size of the IA networks we are able to reason over is far greater than those found in previously published works

    From modular to centralized organization of synchronization in functional areas of the cat cerebral cortex

    Get PDF
    Recent studies have pointed out the importance of transient synchronization between widely distributed neural assemblies to understand conscious perception. These neural assemblies form intricate networks of neurons and synapses whose detailed map for mammals is still unknown and far from our experimental capabilities. Only in a few cases, for example the C. elegans, we know the complete mapping of the neuronal tissue or its mesoscopic level of description provided by cortical areas. Here we study the process of transient and global synchronization using a simple model of phase-coupled oscillators assigned to cortical areas in the cerebral cat cortex. Our results highlight the impact of the topological connectivity in the developing of synchronization, revealing a transition in the synchronization organization that goes from a modular decentralized coherence to a centralized synchronized regime controlled by a few cortical areas forming a Rich-Club connectivity pattern.Comment: 24 pages, 8 figures. Final version published in PLoS On

    SHRIMP zircon geochronology of the Emeishan Large Igneous Province (SW China): implications for double mass extinctions in Late Permian

    Get PDF
    Abstract in http://www.lpi.usra.edu/meetings/gold2001/pdf/3519.pd

    A bank of unscented Kalman filters for multimodal human perception with mobile service robots

    Get PDF
    A new generation of mobile service robots could be ready soon to operate in human environments if they can robustly estimate position and identity of surrounding people. Researchers in this field face a number of challenging problems, among which sensor uncertainties and real-time constraints. In this paper, we propose a novel and efficient solution for simultaneous tracking and recognition of people within the observation range of a mobile robot. Multisensor techniques for legs and face detection are fused in a robust probabilistic framework to height, clothes and face recognition algorithms. The system is based on an efficient bank of Unscented Kalman Filters that keeps a multi-hypothesis estimate of the person being tracked, including the case where the latter is unknown to the robot. Several experiments with real mobile robots are presented to validate the proposed approach. They show that our solutions can improve the robot's perception and recognition of humans, providing a useful contribution for the future application of service robotics

    Identification of malaria transmission and epidemic hotspots in the western Kenya highlands: its application to malaria epidemic prediction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria in the western Kenya highlands is characterized by unstable and high transmission variability which results in epidemics during periods of suitable climatic conditions. The sensitivity of a site to malaria epidemics depends on the level of immunity of the human population. This study examined how terrain in the highlands affects exposure and sensitivity of a site to malaria.</p> <p>Methods</p> <p>The study was conducted in five sites in the western Kenya highlands, two U-shaped valleys (Iguhu, Emutete), two V-shaped valleys (Marani, Fort-Ternan) and one plateau (Shikondi) for 16 months among 6-15 years old children. Exposure to malaria was tested using circum-sporozoite protein (CSP) and merozoite surface protein (MSP) immunochromatographic antibody tests; malaria infections were tested by microscopic examination of thick and thin smears, the children's homes were georeferenced using a global positioning system. Paired t-test was used to compare the mean prevalence rates of the sites, K-function was use to determine if the clustering of malaria infections was significant.</p> <p>Results and Discussion</p> <p>The mean antibody prevalence was 22.6% in Iguhu, 24% in Emutete, 11.5% in Shikondi, 8.3% in Fort-Ternan and 9.3% in Marani. The mean malaria infection prevalence was 23.3% in Iguhu, 21.9% in Emutete, 4.7% in Shikondi, 2.9% in Fort-Ternan and 2.4% in Marani. There was a significant difference in the antibodies and malaria infection prevalence between the two valley systems, and between the two valley systems and the plateau (P < 0.05). There was no significant difference in the antibodies and malaria infection prevalence in the two U-shaped valleys (Iguhu and Emutete) and in the V-shaped valleys (Marani and Fort Ternan) (P > 0.05). There was 8.5- fold and a 2-fold greater parasite and antibody prevalence respectively, in the U-shaped compared to the V-shaped valleys. The plateau antibody and parasite prevalence was similar to that of the V-shaped valleys. There was clustering of malaria antibodies and infections around flat areas in the U-shaped valleys, the infections were randomly distributed in the V-shaped valleys and less clustered at the plateau.</p> <p>Conclusion</p> <p>This study showed that the V-shaped ecosystems have very low malaria prevalence and few individuals with an immune response to two major malaria antigens and they can be considered as epidemic hotspots. These populations are at higher risk of severe forms of malaria during hyper-transmission seasons. The plateau ecosystem has a similar infection and immune response to the V-shaped ecosystems. The U-shaped ecosystems are transmission hotspots.</p
    corecore