81 research outputs found

    The models of bilevel programming with lower level second-order cone programs

    Full text link

    The Jacobian Consistency of a One-Parametric Class of Smoothing Functions for SOCCP

    Get PDF
    Second-order cone (SOC) complementarity functions and their smoothing functions have been much studied in the solution of second-order cone complementarity problems (SOCCP). In this paper, we study the directional derivative and B-subdifferential of the one-parametric class of SOC complementarity functions, propose its smoothing function, and derive the computable formula for the Jacobian of the smoothing function. Based on these results, we prove the Jacobian consistency of the one-parametric class of smoothing functions, which will play an important role for achieving the rapid convergence of smoothing methods. Moreover, we estimate the distance between the subgradient of the one-parametric class of the SOC complementarity functions and the gradient of its smoothing function, which will help to adjust a parameter appropriately in smoothing methods

    Solving Bilevel Multiobjective Programming Problem by Elite Quantum Behaved Particle Swarm Optimization

    Get PDF
    An elite quantum behaved particle swarm optimization (EQPSO) algorithm is proposed, in which an elite strategy is exerted for the global best particle to prevent premature convergence of the swarm. The EQPSO algorithm is employed for solving bilevel multiobjective programming problem (BLMPP) in this study, which has never been reported in other literatures. Finally, we use eight different test problems to measure and evaluate the proposed algorithm, including low dimension and high dimension BLMPPs, as well as attempt to solve the BLMPPs whose theoretical Pareto optimal front is not known. The experimental results show that the proposed algorithm is a feasible and efficient method for solving BLMPPs

    ADSC Exosomes Mediate lncRNA-MIAT Alleviation of Endometrial Fibrosis by Regulating miR-150-5p

    Get PDF
    BackgroundSecondary infertility remains a major complication of endometrial fibrosis in women. The use of exosomes from adipose-derived mesenchymal stem cells (ADSCs) has shown promising results for the treatment of endometrial fibrosis. However, the mechanisms of action of ADSC-exosome (ADSC-Exo) therapy remain unclear.Materials and MethodsAn endometrial fibrosis model was established in mice treated with alcohol and endometrial epithelial cells (ESCs) treated with TGF-β1. ADSCs were isolated from Sprague Dawley (SD) rats, and exosomes were isolated from ADSCs using ExoQuick reagent. Exosomes were identified by transmission electron microscopy (TEM), NanoSight, and Western blot analysis. The expression level of lncRNA-MIAT was detected by qPCR analysis. Western blot analysis was carried out to determine the protein levels of fibrosis markers (TGFβR1, α-SMA, and CK19). A dual-luciferase reporter gene assay was used to verify the relationship between target genes. The endometrial tissues of the endometrial fibrosis model were stained with HE and Masson’s trichrome.ResultsADSCs and ADSC-Exos were successfully isolated, and the expression level of lncRNA-MIAT was significantly down-regulated in endometrial tissue and the TGF-β1-induced ESC injury model, whereas ADSC-Exos increased the expression of lncRNA-MIAT in the TGF-β1-induced ESC model. Functionally, ADSC-Exo treatment repressed endometrial fibrosis in vivo and in vitro by decreasing the expression of hepatic fibrosis markers (α-SMA and TGFβR1) and increasing the expression of CK19. Moreover, miR-150-5p expression was repressed by lncRNA-MIAT in the TGF-β1-induced ESC injury model. The miR-150-5p mimic promoted TGF-β1-induced ESC fibrosis.ConclusionADSC-Exos mediate lncRNA-MIAT alleviation of endometrial fibrosis by regulating miR-150-5p, which suggests that lncRNA-MIAT from ADSC-Exos may be a viable treatment for endometrial fibrosis

    Changes of water clarity in large lakes and reservoirs across China observed from long-term MODIS

    Get PDF
    Water clarity is a well-established first-order indicator of water quality and has been used globally by water regulators in their monitoring and management programs. Assessments of water clarity in lakes over large temporal and spatial scales, however, are rare, limiting our understanding of its variability and the driven forces. In this study, we developed and validated a robust Secchi disk depth (ZSD) algorithm for lakes across China based on two water color parameters, namely Forel-Ule Index (FUI) and hue angle α, retrieved from MODIS data. The MODIS ZSD model shows good results when compared with in-situ measurements from 17 lakes, with a 27.4% mean relative difference (MRD) in the validation dataset. Compared with other empirical ZSD models, our FUI and α-based model demonstrates improved performance and adaptability over a wide range of water clarity and trophic states. This algorithm was subsequently applied to MODIS measurements to provide a comprehensive assessment of water clarity in large lakes (N = 153) across China for the first time. The mean summer ZSD of the studied lakes between 2000 and 2017 demonstrated marked spatial and temporal variations. Spatially, the ZSD of large lakes presented a distinct spatial pattern of “high west and low east” over China. This spatial pattern was found to be associated with the significant differences in lake depth and altitude between west and east China while China's population, GDP, temperature, and precipitation distribution have also contributed to a certain extent. Temporally, the ZSD of most lakes increased during this period, with an overall mean rate of 3.3 cm/yr for all lakes. Here, 38.6% (N = 59) of the lakes experienced a significant increase in their ZSD value during the past 18 years while only 8.5% (N = 13) showed a significant decreasing trend. Significant increases in lake ZSD were observed in west China, which were found to correlate with the increase of air temperature and lake surface area. This is possibly a response of the lakes in west China to climate change. In the lake systems of east China, which are predominately used as a drinking water source, the increase in lake ZSD was found to be strongly correlated with changes in local GDP (gross domestic production), NDVI (normalized difference vegetation index) and lake surface area, suggesting a combined effect of the implemented management practices and climatic variability. The results of this study provide important information for water quality conservation and management in China, and also highlight the value of satellite remote sensing in monitoring water quality over lakes at a large scale and long-term

    Analysis and Prediction of Translation Rate Based on Sequence and Functional Features of the mRNA

    Get PDF
    Protein concentrations depend not only on the mRNA level, but also on the translation rate and the degradation rate. Prediction of mRNA's translation rate would provide valuable information for in-depth understanding of the translation mechanism and dynamic proteome. In this study, we developed a new computational model to predict the translation rate, featured by (1) integrating various sequence-derived and functional features, (2) applying the maximum relevance & minimum redundancy method and incremental feature selection to select features to optimize the prediction model, and (3) being able to predict the translation rate of RNA into high or low translation rate category. The prediction accuracies under rich and starvation condition were 68.8% and 70.0%, respectively, evaluated by jackknife cross-validation. It was found that the following features were correlated with translation rate: codon usage frequency, some gene ontology enrichment scores, number of RNA binding proteins known to bind its mRNA product, coding sequence length, protein abundance and 5′UTR free energy. These findings might provide useful information for understanding the mechanisms of translation and dynamic proteome. Our translation rate prediction model might become a high throughput tool for annotating the translation rate of mRNAs in large-scale

    Dual modification of Alzheimer’s disease PHF-tau protein by lysine methylation and ubiquitylation: a mass spectrometry approach

    Get PDF
    In sporadic Alzheimer’s disease (AD), neurofibrillary lesion formation is preceded by extensive post-translational modification of the microtubule associated protein tau. To identify the modification signature associated with tau lesion formation at single amino acid resolution, immunopurified paired helical filaments were isolated from AD brain and subjected to nanoflow liquid chromatography–tandem mass spectrometry analysis. The resulting spectra identified monomethylation of lysine residues as a new tau modification. The methyl-lysine was distributed among seven residues located in the projection and microtubule binding repeat regions of tau protein, with one site, K254, being a substrate for a competing lysine modification, ubiquitylation. To characterize methyl lysine content in intact tissue, hippocampal sections prepared from post mortem late-stage AD cases were subjected to double-label confocal fluorescence microscopy using anti-tau and anti-methyl lysine antibodies. Anti-methyl lysine immunoreactivity colocalized with 78 ± 13% of neurofibrillary tangles in these specimens. Together these data provide the first evidence that tau in neurofibrillary lesions is post-translationally modified by lysine methylation

    Upper ocean biogeochemistry of the oligotrophic North Pacific Subtropical Gyre : from nutrient sources to carbon export

    Get PDF
    Subtropical gyres cover 26–29% of the world’s surface ocean and are conventionally regarded as ocean deserts due to their permanent stratification, depleted surface nutrients, and low biological productivity. Despite tremendous advances over the past three decades, particularly through the Hawaii Ocean Time-series and the Bermuda Atlantic Time-series Study, which have revolutionized our understanding of the biogeochemistry in oligotrophic marine ecosystems, the gyres remain understudied. We review current understanding of upper ocean biogeochemistry in the North Pacific Subtropical Gyre, considering other subtropical gyres for comparison. We focus our synthesis on spatial variability, which shows larger than expected dynamic ranges of properties such as nutrient concentrations, rates of N2 fixation, and biological production. This review provides new insights into how nutrient sources drive community structure and export in upper subtropical gyres. We examine the euphotic zone in subtropical gyres as a two-layered vertically structured system: a nutrient-depleted layer above the top of the nutricline in the well-lit upper ocean and a nutrient-replete layer below in the dimly lit waters. These layers vary in nutrient supply and stoichiometries and physical forcing, promoting differences in community structure and food webs, with direct impacts on the magnitude and composition of export production. We evaluate long-term variations in key biogeochemical parameters in both of these euphotic zone layers. Finally, we identify major knowledge gaps and research challenges in these vast and unique systems that offer opportunities for future studies
    corecore